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Light bottle transformer based large scale point cloud 
classification* 
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With the rapid development of computer vision, point clouds technique was widely used in practical applications, such 
as obstacle detection, roadside detection, smart city construction, etc. However, how to efficiently identify the large 
scale point clouds is still an open challenge. For relieving the large computation consumption and low accuracy prob-
lem in point cloud classification, a large scale point cloud classification framework based on light bottle transformer 
(light-BotNet) is proposed. Firstly, the two-dimensional (2D) and three-dimensional (3D) feature values of large scale 
point cloud were extracted for constructing point cloud feature images, which employed the prior knowledge to nor-
malize the point cloud features. Then, the feature images are input to the classification network, and the light-BotNet 
network is applied for point cloud classification. It is an interesting attempt to combine the traditional image features 
with the transformer network. For proving the performance of the proposed method, the large scale point cloud 
benchmark Oakland 3D is utilized. In the experiments, the proposed method achieved 98.1% accuracy on the Oakland 
3D dataset. Compared with the other methods, it can both reduce the memory consumption and improve the classifica-
tion accuracy in large scale point cloud classification.  
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With the continuous advancement of laser scanning 
technology and computer vision, general 
two-dimensional (2D) images no longer satisfied the 
application requirements, and three-dimensional (3D) 
point cloud data is attracting more and more attention 
from researchers. The 3D point cloud is formed from a 
series of irregular and disordered 3D points, which con-
tains the geometric information. It can better represent 
the geometric feature of objects and is more accurately 
describe the spatial distribution information of objects. 
The 3D point cloud information is employed to digitalize 
real-world objects and scenes on computer and can be 
widely utilized in many fields, such as robotics, autono-
mous driving, and 3D city modeling. LiDAR technology 
provides fantastic convenience for obtaining point cloud 
data[1]. The collected point cloud data both contains the 
spatial information of points and material features of the 
target object. For further utilizing the collected data for 
autonomous driving and city digitization, different data 
points in point cloud should be classified. With the 

enlargement of the measurement environment, the 
amount of point cloud is increased rapidly, which ampli-
fies the computational burden. Furthermore, the wider 
environment expands the problem of the laser scanning 
distance variation, which makes the uneven distribution 
of cloud points. Especially in the urban transport scene, 
the target size is quite different.  

For accelerating the point cloud classification, uniform 
sampling is a fundamental method to reduce the proc-
essing data. But uniform sampling of the large scale 
point cloud may miss vital information, which will affect 
the further analysis of point cloud processing, and may 
cause a serious accident in practical application, such as 
missing obstacles in autonomous driving. In addition, 
one of the important requirements of the practical appli-
cations is real-time, which means the large scale point 
cloud classification method should be efficient as well. 
How to design a framework for large scale point cloud 
classification, which both achieves high accuracy and 
efficiency? It is a valuable problem.
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At present, point cloud classification methods[2] can be 
roughly divided into four categories, handcrafted fea-
ture-based methods, projection-based deep learning 
methods, voxel-based deep learning methods, and 
point-based deep learning methods. 

Before the notable success of deep learning technique, 
the handcraft feature-based method is the most useful 
way for point cloud classification. The local geometric 
features are extracted from the neighborhoods of point 
cloud data, and a traditional machine learning classifier 
is employed for further processing. For example, 
WEINMANN et al[1] demonstrated that the selection of 
optimal neighborhoods for individual 3D points signifi-
cantly improves the results of 3D scene analysis, and a 
detailed evaluation involving 7 neighborhood definitions, 
21 geometric features, 7 approaches for feature selection, 
and 10 classifiers are compared. The machine learn-
ing-based classification methods construct a model to 
classify the point cloud by training. The random forest 
(RF) and support vector machine (SVM) are the most 
common methods for point cloud classification[3]. 
Moreover, conditional random field (CRF) is also used in 
point cloud classification, such as NIEMEYER et al[4] 
established a two-layer framework of space and semantic 
context by CRF, and improved the classification per-
formance through point clouds segments random gener-
ating an iterative calculation. The handcraft features are 
reasonable and useful, but the limitation of classifiers 
affects the performance of point cloud classification. 

After the deep neural network was proposed, the point 
cloud classification method based on deep learning has 
attracted wide attention in academia. There are three dif-
ferent ways to combine the point cloud with the deep 
neural network, projection-based deep learning methods, 
voxel-based deep learning methods, and point-based 
deep learning methods. Projection-based methods con-
vert 3D disordered point cloud data into 2D images and 
classifies 2D images by convolutional neural network 
(CNN), such as ROVERI et al[5]. The projection-based 
methods benefit from the well-established 2D CNN, but 
the projection operation may cause the redundant com-
putation or miss parts of geometric information of point 
cloud. Voxel-based methods divide the point cloud as the 
3D regular cubes, and make use of 3D CNN to process 
each cube, such as VoxNet[6]. In the large scale point 
cloud, the sizes of object are various, which masks the 
uneven distribution of point cloud. The voxel-based 
methods partitioning the big problem into small one 
speed up the efficiency, but the voxels of point cloud loss 
the global information. For extracting the feature of point 
cloud automatically, point-based methods were studied. 
QI et al[7] advanced PointNet framework, which uses 
symmetric functions to solve the disorder problem, and 
combines T-Net matrix to integrate point cloud features 
for keeping the rotation invariance. Multiple-feature ex-
traction strategy was applied in a latter version named 
PointNet++[8]. Differently, LI el al[9] utilized multi-layer 

perceptron (MLP) and X-transform matrix to deal with 
the point cloud disorder problem. Point-based methods 
both obtain the local and global features in point cloud, 
but processing each point is a high time complexities 
work. 

The point cloud classification frameworks have made 
great progress in recent years, but there is still a certain 
distance from practical requirement on performance and 
efficiency. The traditional handcraft feature is an inter-
pretable and efficient way to extract the point cloud fea-
ture, and CNN as a classifier shows the great potential of 
post process. Therefore, a fusion framework is proposed 
in this paper to solve the large scale point cloud classifi-
cation problem. The network input feature images con-
sist of the 2D and 3D geometric information in point 
cloud. Then, a light weight neural network combining 
the transformer and residual network is utilized to clas-
sify the point cloud. The fusion framework both contains 
the advantages of handcraft feature-based methods and 
deep learning-based methods. 

With the rise of artificial intelligence, deep learning 
has been widely used in image-based scene analysis and 
has obtained great successes. The core problem of point 
cloud classification is to design features with strong 
distinguishability. Before the rise of deep learning, the 
processing of point cloud data was mainly based on arti-
ficial features designed by humans, while the existing 
geometric features and physical attribute features have 
been saturated stage. The point cloud classification 
method based on deep learning assigns the task of feature 
design to the computer, instead of manually selecting the 
feature description, the 3D coordinates of the point are 
directly used as input, and the feature is also defined as 
an unknown parameter, calculate these parameters to-
gether with the classifier parameters. The goal of deep 
learning is to find the parameter value that minimizes the 
loss function. Therefore, deep learning is guided by the 
classification results, and simultaneously solves the op-
timal features and the optimal classifier. Although deep 
learning algorithms have achieved great success in the 
fields of image segmentation and object recognition, 
there is no mature solution for applying deep learning to 
the single-point classification of point clouds. There are 
still problems worthy of further discussions, such as how 
to make the network model take into account high preci-
sion and high efficiency, how to use the connection be-
tween points more fully and flexibly, and so on.  

Most point cloud classification methods based on deep 
learning are formed alternately by the convolution layer 
and pool layer. The neurons in the convolution layer are 
only connected with part of the upper layer and partial 
features are learned, which may lose part of the informa-
tion in feature extraction, and leads to an accuracy de-
cline. The transformer brings a new way of feature ex-
traction, which links the global features in each layer. 
The transformer was first presented in the field of natural 
language processing (NLP) and achieved great success,
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which applied a self-attention mechanism to extract in-
trinsic features. Inspired by the function of transformers 
in NLP, researchers began to apply transformer in com-
puter vision. For example, stand-alone self-attention 
(SASA)[10] is a transformer model that replaces the con-
volution layer in ResNet bottleneck with different forms 
of self-attention (local, global, vector, axial, etc). By 
training sequence transformer to auto-regressively pre-
dict pixels, CHEN et al[11] achieved comparable results to 
CNN in image classification tasks. VASWANI et al[12] 
advanced to stack transform blocks based solely on at-
tention mechanisms, dispensing with recurrence and 
convolutions entirely. 

In the task of large scale 3D point cloud data classifi-
cation, handcraft features are computational friendly, and 
deep learning methods are good at potential feature ex-
traction. In the deep learning methods, CNNs are adept 
in extracting local features, while the attention mecha-
nism in transformer is expert in extracting the global 
information. BotNet is a combination of CNN and trans-
former by SRINIVAS et al[13]. It combines the local fea-
ture extraction ability of CNN and the self-attention 
mechanism of transformer in a hybrid way, and the per-
formance is both better than CNN and transformer. 
Hence, for balancing the performance with computa-
tional burden, a light-BotNet is proposed to extract and 
aggregate features in this paper. The proposed frame-
work fuses the traditional handcraft features, CNNs and 
transformer to achieve the better result of point cloud 
classification. The contribution of this paper is as fol-
lows. 

The geometric information of 3D point cloud is used 
to construct the feature image as the input of network, 
which combines the traditional features with deep learn-
ing methods to make the solution more interpretability. 

For improving the efficiency of framework, a light-
weight network model light-BotNet is proposed based on 
the BotNet, which gathers the benefit both on CNNs and 
transformer. 

A framework of large scale point cloud classification 
is constructed by the 32×32 point cloud feature matrix 
image and light-BotNet network, which achieves 98.1% 
accuracy on Oakland 3D dataset. 

 
Tab.1 Point based features 

Type Components 

Geometric 3D feature Lλ, Nx, Ny, Nz, Pλ, Sλ, Mx, My, 
Mz, Oλ, Aλ, Eλ, Tλ, Cλ, D, Q, V 

Geometric 2D feature rk, D2D, Rλ,2D, Evratio, S2 
 

The geometric information is an important property of 
point cloud, and the geometric information relays on the 
neighborhood of each point in the point cloud. So, the 
geometric information of 3D point cloud is applied as the 
input features of framework in this work. The 2D and 3D 
geometric features are both support the point cloud clas-
sification. Therefore, there are 17 3D features and 15 2D 

features combined into a 2D feature image as shown in 
Fig.1. For further promoting the feature extraction, 
multi-level feature combination is adopted in preproc-
essing. The features of each point are calculated by the 
K-D tree (K=50), as listed in Tab.1. 

The 3D structure tensor S∈ℝ3×3 is constructed for a 
given 3D point X=X0 by involving its K closest 
neighbors Xi with i=1,2,3,…, K,  
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where S is a non-negative matrix, whose rank is 3 in 
general. Therefore, the feature values λ1, λ2, λ3≥0, and the 
feature values determine a set of orthogonal vectors. Sort 
the feature values so that λ1≥λ2≥λ3. The feature values are 
used to further extract the 3D geometric feature of 3D 
point cloud data, as shown in Tab.1. There are 22 differ-
ent geometric feature elements in geometric feature vec-
tor, and each feature is listed as follows.  

Features based on the local surface variation Cλ are as 
follows 
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where λ1, λ2, and λ3 can derive dimensional features, 
such as linearity Lλ,, planarity Pλ and scattering Sλ, which 
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The 3D local point density D is 
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where rK-NN denotes the radius of the local 3D 
neighborhood encapsulating the K closest neighbors.  

For estimating the order/disorder of 3D points within 
the local 3D neighborhood, the three feature values λ1, λ2, 
and λ3 are normalized by their sum Σλ, and the normal-
ized feature values ei=λi/Σλ with i∈{1,2,3} and ei∈[0,1] 
thus sum up to 1. In the calculation of the 3D feature 
vector, some local 3D shape features such as omnivari-
ance Oλ, verticality V (nz is from e3, which is the vertical 
component of the normalized vector), anisotropy Aλ and 
eigenentropy Eλ are 

3
1 2 3 ,O e e e                           (8) 

1 ,zV n                            (9) 

1 3

1

,
e e

A
e


                             (10)



·0380·                                                               Optoelectron. Lett. Vol.19 No.6 

3

1
ln( ).i i

i
E e e



                       (11) 

In the 2D geometric features, the 2D feature values are 
obtained by the point cloud projecting on three different 
coordinate planes, and λ1,2D and λ2,2D are the feature val-
ues of 2D structure tensor. rK-NN,2D is the radius of the 
circular neighborhood defined by 2D point and its K 
closest neighbors, and D2D represents 2D local point 
density, which is the analogy to the 3D case. 
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Rλ,2D means the ratio of eigenvalues in a 2D covari-
ance matrix. 
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Evratio is the ratio of eigenentropy on different coor-
dinate axes (axisa=x, y, z, axisb=y, z, x), and Eλ2D is the 
2D eigenentropy. 
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S2 implies sum of the feature values. 
2 1,2D 2,2D .S   
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Tλ is the trajectory. 
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Then, the features are grouped together and the feature 
image f is constructed. The feature image is a diagonal  

matrix as presented in Eqs.(17)—(19). f3D denotes the 3D 
features. f2D(x), f2D(y), and f2D(z) are the features ob-
tained by the point cloud projecting on three different 
coordinate planes, respectively. I32 is a 32 identity ma-
trix. 

3D [ , , , , , , , , ,x y z x y zL N N N P S M M M  f  
     , , , , , , , ],O A E T C D Q V                 (17) 

2D 2 ,2D 2[ , , , , ],kr D R Evratio Sf              (18) 

3D 2D 2D 2D 32concat[ , ( ), ( ), ( )] .x y z f f f f f I     (19) 
The process of feature image generating is illustrated 

in Fig.1. The feature image bridges the handcraft feature 
and neural network, which has simple, interpretable and 
efficient advantages. The 2D CNNs are well-established 
and mutated, and the feature image is a flexible way to 
get the benefit from CNNs. 

 

Fig.1 Process of feature images generation 

 
Tab.2 Comparison of three different neural networks 

Layer name ResNet50 BotNet50 Light-BotNet 

Conv1_x 
3×3, 64, stride 1 

3×3 max pool, stride 2 

Conv2_x 3
25611
6433
6411






















 

3
25611
6433
6411






















 

1
6411
6433
6411






















 

Conv3_x 4
51211
12833
12811






















 

4
51211
12833
12811
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



















 

3
12811
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


















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Conv4_x 
1 1 256

63 3 256
1 1 1 024

 
   
  

 
1 1 256

63 3 256
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 
   
  

 1
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


















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Conv5_x 
1 1 512

33 3 512
1 1 2 048

 
   
  

 
1 1 512

MSHA 512 3
1 1 2 048

 
  
  

 1
512
128
128

11
MSHA

11



















  

 
BotNet is a fusion model which makes up the superi-

orities of CNN and transformer, and the performance is  

 
both better than CNN and transformer. Light-BotNet is a 
modified network based on BotNet[13] with light-weight 
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design, which reduces calculations and parameter 
amount of the BotNet. A hybrid model of convolution 
and self-attention mechanisms is applied in the network, 
which further combines the advantages from CNN and 
transformer. The CNN network layers can effectively 
learn abstract and low-level features in large scale im-
ages, and the global self-attention of transformer can 
obtain the information contained in the whole feature 
maps. However, the self-attention block in transformer 
consumes too much computing resources, and the 
multi-head self-attention (MHSA) layer is applied to 
instead the original self-attention block with 3×3 convo-
lution layer. The light-BotNet uses 2×2 average pooling 
for down sampling, because MHSA module does not 
support stride operation, and down sampling can reduce 
the calculation of network. The positional encoding 
strategy is equipped in the light-BotNet network for ef-
fectively associating information between objects with 
location perception, which is also suitable for computer 
vision tasks[14]. The network of light-BotNet refers to 
transformer block, self-attention with relative position 
and none local structure. The construction of different 
network structures is presented in Fig.2. 
 

 
Fig.2 Contrast of bottleneck in different networks 

 
In Fig.2, (a) shows the bottleneck in ResNet, (b) pre-

sents the transformer bottleneck with MHSA, and (c) 
illustrates the bottleneck structure in light-BotNet. The 
difference is that the 3×3 convolutional layer is replaced 
with MHSA and an average pooling layer is supple-
mented for reducing the calculation of network features 
and maintaining the feature learning ability. The residual 
link avoids the gradient disappearance, and helps the 
network converge stably. 

The specific network of light-BotNet is compared with 
the ResNet and BotNet50 in Tab.2. Due to the input size 
of the feature images, the layer Conv1_x is modified for 
suiting the input structure, the 7×7 convolution layer 
with stride 2 is replaced by the 3×3 convolution layer 
with stride 1. The structure of light-BotNet is similar to 
the other two networks, but the repeated block amount is 
smaller for reducing the computation consumption. The 
latter block of light-BotNet uses the special bottleneck as 
presented in Fig.2. 

The proposed framework utilizes the handcraft geo-
metric feature as the preprocessing, and employs the 

light-BotNet as the classifier for post processing. The 
network of large scale point cloud classification based on 
light-BotNet is illustrated in Fig.3. First, the neighbor-
hood of 3D K-D tree (K=50) and projected 2D 
neighborhood are selected respectively, and the feature 
values of structure tensor is obtained. Then, the features 
of 2D and 3D are extracted for feature images generating. 
Next, the feature images are inputted into the 
light-BotNet network for point cloud classification, and 
the network adaptively selects useful information from 
the point cloud features to classify the 3D point clouds. 

 
Fig.3 Flowchart of light-BotNet  

 
The fusion structure is a valid way to balance the effi-

cacy and performance of large scale point cloud classifi-
cation. The geometric feature selection not only avoids 
the information missing like voxel-based methods, but 
also decreases the calculation of point cloud, unlike the 
point-based deep learning methods. One of the short-
coming of neural network is the high computational 
complexity, and if the framework should be popular to 
apply in the practical application, the network should be 
light-weight. Therefore, the light-BotNet is designed to 
select and classify the point cloud in the post processing 
of the framework. 

This work provides experiments on the Oakland 3D 
large scale point cloud dataset to verify the effectiveness 
and robustness of the proposed framework, and conducts 
the analysis of experimental results. The experiments are 
implemented in Python 3.7 and run on an Intel i7-4790 
processor with 3.6 GHz central processing unit (CPU), a 
NVIDIA TITAN RTX graph processing unit (GPU) and 
32 GB random access memory (RAM). The framework 
is built in Pytorch 0.6, CUDA 10.0, and CUDNN7.6.4 in 
Window10. The Adam optimizer is applied in the net-
work training, and the initial learning rate is set to 10-3 
which is gradually decreased by a factor of 10 every 40 
epochs. 

The Oakland 3D large scale point cloud dataset is de-
rived from the campus surrounding of Carnegie Mellon 
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University in Oakland by the most widely used mobile 
laser scanning (MLS). The dataset mainly covers various 
objects in the large-scale urban environment, including 
wires, poles, facade, ground, and vegetation. The sample 
amount of each category is listed in Tab.3. As we can see, 
vegetation and facade are the major part in train dataset, 
while the vast majority data of test dataset is ground. 

Tab.3 Subsample data of Oakland 3D dataset 

Category Train dataset Test dataset 

Vegetation 14 441 9 278 

Wire 2 571 481 

Pole 1 086 368 

Ground 4 713 71 863 

Facade 14 121 7 821 
Total 36 932 89 811 

 
In this paper, the performance of the proposed framework 

is compared with different methods on Oakland dataset 
and the results are listed in Tab.4, where OA represents 
the overall classification accuracy. Comparing with the 
other methods[1,3,15-18], the framework gets the best per-
formance in overall accuracy, of which the accuracy 
reaches 98.1%. As presented in Tab.4, the facade classi-
fication result of the proposed framework is much better 
than other methods, and the classification performance in 
vegetation and ground are similar to the best results, but 
the results of pole and wire are disappointing. Because 
the number of cloud point in facade, ground and vegeta-
tion categories are much more than the number in pole 
and wire, the accuracy of overall is significantly affected 
by the point cloud with large number. When the 2D fea-
ture of small number point cloud is obtained, the points 
are projected in x, y, z directions, and different points 
may overlap on the same plane. It will influence the 
classification in the objects with small number point 
cloud, but benefit for large objects. The visualization 
results are depicted in Fig.4.  

Tab.4 Comparison with other methods on Oakland dataset 

Method Pole (%) Vegetation (%) Wire (%) Ground (%) Facade (%) OA (%) 

WANG[1]  70.11 80.55 93.08 98.22 70.95 94.68 

RF[1] 79.99 84.41 86.05 98.48 67.01 92.25 

SVM[2] 78.1 79.46 82.99 94.92 64.39 89.1 

MUNOZ[3] 28.7 97.4 12.5 98.2 90.8 91.66 

MRF[5] 68.0     95.5 51.3 98.4 92.9  97.0 

CCM[6] 82.67     97.83 30.26 99.17 90.33 97.59 

Our method 20.7 93.0 18.0 99.6 98.7 98.1 

 

 
(a) Front view  

 
(b) Top view  

   

(c) Left view               (d) Right view  

Fig.4 The visualization results on Oakland dataset 

 
Fig.4(a), (b), (c) and (d) are the front view, top view, 

left view and right view of results, respectively, and the 
yellow, green, purple, red, blue points mean ground, wire, 
pole, facade, and vegetation, respectively.  

Fig.5 shows the visual comparison of results and 
ground truth on facade point cloud, where (a) is the result 
obtained by the proposed framework, and is the ground 
truth. The facade classification is pretty good. Fig.6 is 
the visual comparison on wire point cloud, where (a) is 
the result, and (b) is the ground truth. 

 

      

(a) Facade label result              (b) Ground truth 

Fig.5 Comparison of facade point cloud
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(a) Wire label result 

 

(b) Ground truth 

Fig.6 Comparison of wire point cloud 
 
Fig.7(a) and (b) are the visualization of the results, and 

Fig.7(c) and (d) are the ground truth of the test set. 

    

(a)            (b)             (c)            (d) 

Fig.7 Comparison of other label point clouds: (a) (b) 
Visualization of the results; (c) (d) Ground truth of the 
test set 

The result of experiments show that the proposed 
method can achieve good result to classify the big object 
in point cloud, especially the objects are relatively large 
in multiple dimensions, such as vegetation, ground, and 
facade. And the object is small in one dimension like 
wire and pole, of which the feature might be vanished in 
2D projection, and the classification results are unsatis-
fied. The big object is the main part in the dataset, so the 
overall accuracy of our method can be the best. 

In order to prove the performance of light-BotNet 
based on channel attention mechanism, the performance 
and memory consumption of three networks are evalu-
ated, and the results are presented in Tab.5. By compar-
ing the performance and memory consumption of the 
three networks in Tab.5, the networks ResNet50 and 
BotNet50 have lower accuracy than light-BotNet, be-
cause the large scale point cloud has already been pre-
processed in the proposed framework, and the deeper 
network models provide no advantage. Although the 
ResNet50 backbone can be applied to multiple models to 
extract effective features, it may not be suitable for this 

framework. Comparing the consumption of all networks, 
light-BotNet reduces 50% network layers, and forms a 
light-weight transform network model. There is little 
difference between BotNet50 and ResNet50 in the cal-
culation flops and network parameters, but light-BotNet 
gets the best result with nearly 50% consumption reduc-
tion. 
 
Tab.5 Comparison of network performance and 
memory consumption 

Network Flops (byte) Params (byte) Accuracy 

Light-BotNet 23 068 672 000 10 808 773 98.1% 

BotNet50 41 799 385 088 23 513 285 90.5% 

ResNet50 40 596 406 272 18 799 301 75.1% 

 
Aiming at the problems of the large scale 3D point 

cloud classification, a fusion framework based on hand-
craft features, CNN, and transformer is proposed. The 
2D and 3D geometric features of large scale point clouds 
were extracted for constructing point cloud feature im-
ages as the preprocessing. The light-weight network 
named light-BotNet is provided for point cloud classifi-
cation, which reduces the framework parameters and 
improves the performance of large scale point cloud 
classification. In the experiment, a variety of point cloud 
classification methods are compared in the Oakland 3D 
large scale point cloud dataset, and the proposed frame-
work gets better performance than other methods in 
overall classification accuracy. 

In the process of feature image construction, only the 
spatial features are applied to deal with the point cloud 
disorder and rotation invariance problem, and some other 
information about the point cloud such as object color is 
not used. How to combine the multi-level features in 
large scale 3D point clouds, and which is the most useful 
feature for point cloud classification are our future 
works. 
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