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Damage identification technology of substation instru-
ment panel for solving imbalanced classification* 
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Edge computing plays an active role in empowering the power industry as a key technology for establishing 
data-driven Internet of things (IoT) applications. Traditional defect diagnosis mainly relies on regular inspection of 
equipment by operation and maintenance personnel at all levels, and its accuracy relies on the human experience. In 
actual production, the image data of some dashboard damage types are easy to collect in large quantities, while some 
dashboard damage types occur less frequently and are more difficult to collect. The use of edge computing nodes al-
lows flexible and fast collection of smart meter data and transmission of the reduced data or results to a cloud comput-
ing center. In this study, we provide a fresh balanced training approach to address the issue of learning from unbal-
anced data. In the equilibrium training phase, a new impact balance loss is introduced to reduce the influence of sam-
ples on the overfitting decision boundary. Experimental results show that the proposed balance loss function effectively 
improves the performance of various types of imbalance learning methods. 
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In the power system, there are inevitably many power 
equipment need to be exposed to the external environ-
ment for a long time, bearing the task of high load and 
high voltage work. It will also be affected by bad 
weather, which is very easy to make the equipment ap-
pear different degrees of damage, and inevitably will 
make its various performance weakened. With the deep-
ening of the intelligence of the power system, the number 
of terminal device connections has increased dramati-
cally, and the traditional cloud computing has been un-
able to carry the massive data processing. The effective 
combination of edge computing[1,2] and power system not 
only provides strong support for the safe operation of 
power system, but also brings new opportunities and 
challenges for the edge intelligence of power system. 
While the massive amount of data generated at the edge 
of the power grid brings convenience to people, there are 
also problems of security risks. On the one hand, it is 
how to use deep learning algorithms to detect abnormal 
equipment images and obtain valid information from 
them to enhance the power system. On the other hand, 
the current processing of massive data relies entirely on 
cloud computing platforms, which can lead to the prob-
lem of idle resources on end devices. Edge computing is 
a key link in establishing data-driven power system ap-
plications with advantages such as real-time efficiency, 

network stress relief, and intelligent security. And when 
there is a problem of damage to the power equipment, the 
edge computer system can be used for reasonable distri-
bution, without affecting the operational efficiency of the 
whole system. 

Resampling, cost-sensitive learning[3], and adjustable 
learning rates[4] are a few strategies that have been sug-
gested in recent years to lessen the effect of data class 
imbalance on model performance. These techniques 
haven't been proven to work with deep learning models, 
hence they only work with shallow models. Deep repre-
sentational learning [5] can likewise be confused by the 
same variables. In this study, we provide a fresh balanced 
training approach to address the issue of learning from 
unbalanced data. We also propose an ideal knowledge 
transfer wide residual network fragmentation image clas-
sification method to address the issue of low resolution 
acquired images and poor visual information. It results in 
many participants in the teacher network and low accu-
racy in the student network, as well as to compensate for 
the shortcomings of using size models for classification 
tasks. The teacher network and student network are mod-
eled after edge computing and edge intelligence, respec-
tively[6,7]. The teacher network with the best knowledge 
transfer directs the training of the student network using a 
combination of a hidden layer attention transfer algorithm 
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and an output layer knowledge distillation algorithm. The 
student network may manage a variety of computational 
tasks independently without sharing the underlying data 
with the instructor network thanks to such a distributed 
edge computing node. Additionally, edge computing's 
decentralized and hierarchical computing architecture 
offers the network more dependable deep learning calcu-
lations. Our suggested approach can be easily combined 
with other recent resampling, cost-sensitive learning, and 
adaptive learning rate methods to address class imbal-
ance, because our losses are not restricted to particular 
tasks, models, or training methods, and edge computing 
also has richer data and application scenarios. 

The trained deep learning-based transformer breakage 
detection model detection is the current widely used in-
spection method [8]. The weighted samples that cause 
deep neural network (DNN) overfitting for extremely 
unbalanced data training are reduced using a novel 
loss-sensitive method that we describe in this study. We 
create a brand-new impact-balancing loss and weight 
samples differently based on how they affect the bound-
ary information. In particular, using the reciprocal of the 
effect of each sample, we recalculate the weight loss 
proportion. Impact balancing fine-tuning and conven-
tional training are the two components of our approach. 
The proposed impact balance loss reduces the impacts 
that cause the boundary information to be overfit during 
the fine-tuning stage. 

Without removing the data and retraining the model, 
the influence function enables us to predict the change in 
model parameters when eliminating samples. Let f (x, w) 
denote the model parameterized by w with n training data 
(x1, y1)…(xn, yn), where xi is the i-th training sample with 
label yi.  

We rescale the weights in the opposite proportion to 
the sample impact during the fine-tuning step to correct 
the imbalance. If the distribution of training data at a 
position (x, y) is slightly altered, the impact of that point 
can be approximated by parameter changes. This is how 
the influence function is displayed as   

1( , ) ( , ( , )).I H   wx w L y f x w                 (1) 
The derivation from L(x, w) affects the equilibrium 

loss function, and since the inverse Hessian matrix must 
be thoroughly calculated for the vector L(x, w), direct use 
is practically not possible. Influencing the equilibrium 
loss function from the middle derivative is almost impos-
sible to use it directly since the inverse matrix must be 
extensively computed for a vector. As a result, we change 
L(x, w) to a straightforward and efficient influence bal-
ancing weighting factor. First, L(x, w) can be completely 
disregarded because we only need to consider the relative 
impact of the training samples rather than their absolute 
value. This is due to the fact that all training samples are 
typically multiplied by the inverse of Hessian. The im-
pact equilibrium loss weighting factor is then created as  

1
( ; ) ( , ( , )) ,IB  wx w L y f x w                  (2)  

where IB(x; w) is the magnitude of the gradient vector. It 

can be further simplified when using softmax 
cross-entropy loss. We consider the overfitting of model 
boundaries to be very important, so we focus on the 
changes in the last fully connected (FC) layer where the 
deep neural network works. Set h=[h1,…,hL]T as the hid-
den feature vector as the input of FC layer and f (x, 
w)=[f1,…,fK]T

 as the output of T: ( )K Kf  w h , where δ is 
the softmax function. The weight matrix of the FC layer 
is denoted by w=[w1,…,wK]T∈RK×f. Ultimately, the gra-
dient of the loss is calculated by the following equation: 
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The cross-entropy loss [9] with function or the mean 
square error (MSE) loss applied for regression both 
yielded the same results. The inverse term of which can 
be used to reweight the factors in order to reduce the 
weights of the influential samples during the fine-tuning 
process: 
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Finally, the equilibrium loss is given by the following 
equation: 
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Additionally, we modify the impact equilibrium loss 
in Eq.(5) by adding a class reweighting term λk    
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Since normalization is done and nk is the number of 
samples in class k in the training dataset, λk has a similar 
scale for each class. α is introduced as an adjustment 
hyperparameter. The following two results result from 
ranking the weights. First, by slowing down majority loss 
minimization, k lessens the bias of the decision boundary 
caused by the overall distribution imbalance. Second, λk 
controls the wisely adjusted weights of the samples ac-
cording to the classes to which the samples with high 
influence belong. Because the influence of the minority 
sample is very substantial due to the dearth of data, if the 
sample falls into the minority category, λk is less than the 
majority sample and has minimal negative weighing on 
the loss.  

The student's network has insufficient precision in 
recognizing low resolution images and inadequate visual 
information, while the teacher's problem network in-
cludes a great number of characteristics. The student's 
network is condensed to a residual network with only 
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three residual blocks, which is the breadth of the wide re-
sidual network, or the instructor's network, when the 
teacher chooses a network with an extensive residual net-
work depth of 40. In order to promote the transfer of bro-
ken knowledge to the student network, the teacher net-
work's capacity to represent the features of the broken im-
ages is first enhanced by extending the convolutional 
channel dimension. The student network is also simplified 
to a 10-layer residual network with three residual blocks in 
order to considerably minimize the number of student net-
work parameters. The degree of fragmented knowledge 
transfer from the teacher network to the student network 
was visualized by calculating the ratio of the difference in 
correct rates between the teacher network of known width  

and the mentored student network to the difference i. Next, 
knowledge bias was measured by mapping the perform-
ance of teacher and student networks of different widths on 
a number axis. The degree of information transfer increases 
with decreasing knowledge divergence. Finally, the 
knowledge deviation and degree of accuracy improvement 
of the student network under various methods are com-
bined to determine the best knowledge transfer network. 

In order to guide the student network after training to 
obtain the best student network for broken classification 
accuracy, the teacher network is used in conjunction with 
a combination of hidden layer attention, algorithm, and 
output layer knowledge distillation algorithm [10] for 
maximum knowledge transfer.  

 
Fig.1 Broken image classification process of the teacher-student network 

 
The complex imaging backgrounds and significant 

variations in distance and angle in the detection images 
are distinguishing features. Additionally, the instrument 
panel images typically have low resolution due to the low 
proportion of instrument panel photos in the detection 
images [11]. As a result, the instrument panel broken image 
classification dataset contains a significant amount of 
challenging samples, such as shadows, blurring, and oc-
clusions, which significantly raises the challenge of the 
task. Because the dashboard image has low resolution 
and poor visual information, the feature information in 
the image is fully extracted by widening the feature ex-
pression dimension of the image, which increases the 
transferable defect knowledge from the teacher network 
to the student network and boosts the student network's 
classification accuracy. The number of convolutional 
kernels in each convolutional layer in the network is 

 * , 16,32,64 ,M K N N                      (7) 

where 16, 32 and 64 are used to represent the bases of the 
network's lower, middle, and higher convolutional ker-
nels. The dashboard defect image's feature information 
emphasis and the network's bottom, middle, and higher 
convolutional kernel counts vary. 

 
Fig.2 Residual blocks: (a) Regular residual block; (b) 
Widened residual block 
 

The convolutional kernels of each convolutional layer 
are still parallel and can completely exploit the feature 
information in the dashboard image even after widening 
the network. The network width is not positively con-
nected with the classification effect, which is predicted, 
and the width cannot be prolonged forever. This is due to 
the fact that the dashboard image contains additional 
redundant information in addition to the data informa-
tion, and an excessive increase in network width will 
result in an overextraction of the features and other in-
formation present in the dashboard image, increasing the 
likelihood of network error learning and affecting the
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final student network classification results. 
 

 
Fig.3 Student network structure 

The student network was narrowed down to a 10-layer 
residual network with three residual blocks in order to 
considerably minimize the characteristics of the student 
network. The student network reserves 16, 32 and 64 
convolutional kernels in the low, middle, and high layers 
of the network, respectively, to guarantee that it perfectly 
matches the teacher network's ability to represent fea-
tures in the hidden layer. The student network is a fun-
damental residual network [12], and the goal of selecting 
three distinct convolutional kernel number residual 
blocks is to decrease the number. 

4 000 transformer instrument panel images are gath-
ered for this paper and divided into 8 categories based on 
the actual situation, of which 1 823 complete and 1 005 
basically complete images are used as the majority cate-
gory. The remaining 622 mirror blurred images are 338 
mirror broken images, 85 mirror aging images, 97 mirror 
tinted images, 13 remaining 622 mirror blurred images, 
338 mirror broken images, 85 mirror degraded images, 
and 97 dashboard stained images. The number of major-
ity and minority classes in this dataset, which is sampled 
and trained using the same methodology, differs signifi-
cantly. This dataset is known as Dashboard-V1. We 
choose 2 400 photos at random for training, 300 for 
validation, and the remaining 300 for testing in the ex-
periment. The test set is divided into four input blocks of 
pixel size, and the output is stitched into pixels since the 
image size of the training set is pixels, whereas the image 
size of the validation set and the test set is pixels.  

All models in this study were implemented and trained using  

PyTorch [13] GPU version, the Dashboard-V1 dataset mod-
els were trained on a single NVIDIA GTX 1080Ti with an 
8-model batch size. The network was trained using sto-
chastic gradient descent (SGD) [14] for 200 iterations (mo-
mentum). The learning rate is first set to 0.1 and then de-
creased by 0.01 after 160 and 180 iterations, respectively. 
Using the common cross-first loss, we train the network 
for the first 100 stages, and then we use the impact equi-
librium loss to fine-tune the network for the following 100 
stages. Our suggested technique achieves 84% accuracy in 
surface breakage and 86% accuracy in surface blurring on 
the Dashboard-V1 dataset. 

 

 

Fig.4 Dashboard-V1 partial dataset 
 
Tab.1 displays the findings. The accuracy of the stu-

dent network increased by 2.26% after the teacher net-
work used a combination of implicit layer attention 
transfer and output layer knowledge distillation to direct 
the training of the student network. The accuracy gap 
with the teacher network was then only 2.82%, with a 
knowledge bias of 0.28, and the student network's par-
ticipant count was only 0.56% of that of the teacher net-
work. 

 
Tab.1 Accuracy of teacher-student network classification 

Residual network Accuracy (%) Number of participants Number of bytes 

ResNet-10 83.12 78 330 0.30 

ResNet-10 85.78 78 330 0.30 

ResNet-40 88.56 132 965 132.86 

 
In conclusion, this work proposes a novel effect of 

balance loss in order to address the overfitting problem 
with the majority of classes in the class imbalance prob-
lem. The identification issue of broken substation in-
strument panels can be identified by the model trained on 
the unbalanced class data. Due to its direct focus on the 
impact of samples on the model, the impact balance loss 
described in this research can robustly assign weights, in 
contrast to prior methods. Additionally, a solution for the  

 
issue that the low resolution of the detected images and  
inadequate visual information leads to a large number of 
teacher network parameters and low accuracy of the stu-
dent network is proposed by utilizing deep learning and 
edge computing techniques. With the development of 
edge computing technology in the future, the terminal 
equipment and edge infrastructure of the power system 
may have edge computing capability, and edge comput-
ing will have a broader space for development in the 
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electric power intelligent network. 
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