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We study the dynamics of short optical pulses in a real system with periodically distributed dispersion and the nonlin-
earity is governed by the higher order nonlinear Schrödinger equation (HNLSE) with linear and nonlinear gain (loss). 
Under specific parametric circumstances, where the dark and bright solitary waves are combined, a set of entirely new 
types of solitary waves with nonlinear chirp have emerged. For a properly intense optical pulse in the combined soli-
tary waves, the binding of the bright and dark solitary waves is very strong. It is seen that by numerical simulation, 
these pooled types of solitary-like solutions show a high degree of stability while propagating over an extremely long 
distance in the considering system, even in the presence of a high degree of perturbation of the amplitude and white 
noise. All constraint relations on the physical parameters are explicitly shown to be related to the development and to 
the dynamical study of the chirped solitary like solution in the considering medium. 
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The optical pulse or beam transmits through an optical 
fibre without altering its shape and size when the refrac-
tive nonlinearity of the material of the fibre medium, 
induced by the intensity distribution of the optical pulse, 
exactly compensates for the pulse dispersion, called soli-
ton. Most of the time, the weak nonlinearity appearing 
from the Kerr effect is responsible for the development 
of soliton in the fibre of silica glass. It induces a change 
in refractive index directly proportional to the intensity 
of the optical pulse. In this case, the cubic nonlinear 
Schrödinger equation (NLSE) governs the transmission 
of solitary waves in an optical fibre[1]. For an ample ex-
planation of the transmission of very short optical pulses 
in nonlinear media, the cubic NLSE must be rectified to 
comprise some higher order effects[2]. It is recognized 
that temporal optical solitary waves have recently been 
the heart of intensive explore due to their potential appli-
cations in ultra-long distance fibre optic communication 
systems and very fast switching devices. Mind has con-
centrated in the past few years on the analysis of NLSE, 
with the terms of group velocity dispersion (GVD), third 
order dispersion (TOD), fourth order dispersion (FOD), 
intermodal dispersion, self-steepening effect (SS), and 
stimulated Raman scattering (SRS)[3,4]. Recently, the  
higher order nonlinear Schrödinger equation (HNLSE) 
has been analysed in numerous ways (e.g., inverse scat-

tering transform, Ablowitz-Kaup-Newell-Segur (AKNS) 
method, Hirota direct method, Darboux-Baclund trans-
form, Painleve analysis, and conservation laws), and 
some types of exact solitary solutions have been found. 
During the past years, a number of papers have been 
published for a number of purposes, such as the trans-
mission of solitons and interaction between the soli-
tons[5], chirp kink similaritons with varying Raman ef-
fects[6], generation of chirped femtosecond solitary 
waves and double-kink solitary waves[7], and for the de-
velopment of white noise functional solitary wave solu-
tions[8], considering the nonlinear fibres with inhomoge-
neous nonlinearity and dispersion. Refs.[9,10] introduced 
the collective variable method to describe the transmis-
sion of a solitary wave in a vastly dispersed inhomoge-
neous fibre medium, and they demonstrated a transfixing 
periodicity in the soliton's chirp, amplitude, frequency, 
width and phase. Ref.[11] explored chirped bright and 
dark solitary type waves in a nonlinear electrical trans-
mission line (NLET). In Refs.[12,13], the authors freshly 
solved NLSE with the SS effect to come across solitary-
like solutions with nonlinear chirping. In Refs.[14,15], 
the authors studied the stability of the nonlinearly 
chirped solitons. More recently, the authors of 
Refs.[16,17] solved HNLSE with non-Kerr nonlineari-
ties to find families of chirped solitary like solutions. 
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Furthermore, the authors of Refs.[18,19] solved the gen-
eralised NLSE for the existence of chirped solitary like 
solutions in polynomial nonlinearity and non-Kerr law 
media. In this work, we presume an HNLSE with space-
dependent coefficients, as well as the TOD, SRS, SS, 
and linear and nonlinear gain (loss), and come across the 
exact chirped solitary solutions of a completely innova-
tive type. By employing numerical simulation, the dy-
namics of the chirped solitary waves are studied and the 
elevated solidity of the solitary-like solutions in the pres-
ence of crystal-clear perturbation terms was also investi-
gated. 
    The mathematical model that describes the transmis-
sion of an optical solitary wave of undersized pulse 
width in an inhomogeneous single-mode optical fibre in 
the existence of both linear and nonlinear gain (loss) can 
be expressed as follows 
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where q(z, t) is the amplitude of the solitary wave, the 
self-determining coordinates z and t respectively symbol-
ize the distance along the fibre and time, β2(z), β3(z), 
R(z), S(z), and γ(z) stand for the space dependent coeffi-
cients of GVD, TOD, SRS, SS and the cubic nonlinear 
effect, respectively, and Γ(z) and Π(z) respectively sym-
bolize the space dependent coefficients of linear and 
nonlinear absorption or amplification. 
    To resolve the chirped solitary like solution of Eq.(1), 
we presume the solitary like solution as follows 
       ( , ) ( )sech ( ) ( ) exp i , ,q z t A z z t T z z t                

(2) 

       , ( ) ln sech ( ) ( )z t z z t T z        

                     2( ) ( ) ( ) ,a z b z t c z t                                 (3)  
where λ(z) represents the nonlinear chirp, and A(z), η(z), 
T(z) and ϕ(z) respectively represent the amplitude, in-
verse width of the pulse, time position, and phase of the 
optical pulse. a(z) and b(z) respectively represent the 
initial phase and frequency of the pulse, and c(z) repre-
sents the linear chirp effect. 
    Substituting Eq.(2) and Eq.(3) into Eq.(1), and then 
sorting out the real and imaginary parts after removing 
the exponential parts, we reach the expressions as fol-
lows 
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    Eq.(4) implies that the nonlinear chirp parameter of the 
solitary wave is stable while propagating all through the 
inhomogeneous fibre. From Eq.(9), we see that the rate of 
change of time position with the distance of the pulse de-
pends on GVD, TOD, and also depends on the linear and 
nonlinear chirp effects and frequency of the pulse. The 
Eq.(10) implies that the amplitude of the pulse depends on 
the GVD, TOD, nonlinearity of the medium, inverse pulse 
width, and the nonlinear chirp effect of the pulse. From 
the above expressions, we can certainly uncover that once 
the linear chirp effect is ignored, i.e., c(z)=0, we have 
b(z)=b0=const, η(z)=η0=const. Thus, in the deficiency of a 
linear chirping effect, the optical pulse propagates down 
the fibre with an unvarying frequency and an unvarying 
inverse pulse width.  If the pulse energy is defined as 

( )
( )

A zE
z

 , then from Eq.(10), we can terminate that the 

assuming system is not conservative. For picoseconds 
optical pulses, we can assume S(z)=0, and if we regard as 
the nonlinear chirp parameter λ0=0, then from Eq.(12) we 
acquire Π(z)=0. Thus, the nonlinear gain is absolutely 
accountable for the nonlinear chirp effect, and so in the 
case of a single mode inhomogeneous optical fibre, we 
can organize the nonlinear gain by choosing the nonlinear 
chirp in the appropriate way. But it is vital to use even 
more diminutive optical pulses in fibre optic communica-
tion to boost the channel managing capacity and for high 
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speed communication, and then we cannot overlook the 
SS term and consequently the nonlinear gain.  
    For nonlinear chirp parameter λ0=0 from Eq.(12), we 
find Π(z)=S(z)b(z) and thus the nonlinear gain depends 
on the space dependent coefficients of SS and the fre-
quency of the ultra short optical pulse. According to 
Eq.(10) and Eq.(14), we can manipulate the nonlinear 
gain even for ultra short optical pulses by selecting the 
appropriate value of the nonlinear chirp effect in the 
proper parametric conditions. We can also bring to light 
that the change of nonlinear chirp disturbs the initial 
phase, time position, amplitude of the pulse and linear 
gain (loss) of the system directly. When A(z)>0 and 
η(z)>0, the solution in Eq.(2) is justifiable and according 
to this, we will acquire the conditions 2

0 2   for the 

bright solitary wave and 2
0 2  for the dark solitary 

wave for  2 3 0,b    and we will come across the 

conditions 2
0 2  for bright solitary wave and 2

0 2  for 

dark solitary wave for  2 3 0.b    Thus, the solution 

in Eq.(2) is authentic for both bright and dark solitary 
waves. From this aspect, it may unite both bright and 
dark solitary waves concurrently under the some circum-
stances, and they are transmitted concurrently all the way 
through an optical fibre in coalesced form. These solitary 
waves of entirely new born types might be referred to as 
pooled solitary waves. These types of solitary waves 
may be dissociated into bright and dark solitary waves. 
    The phase of the pulse of the solitary solution is given 
by 
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    And the allied chirping effect can be expressed as 
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    In this work, we assume a periodic distributed system 
with varying coefficients of GVD and TOD as follows 
    2 20( ) cos( ),z z                                                 (17) 

    3 30( ) cos( ),z z                                                  (18) 

and the coefficient of nonlinear term is given by 
     0( ) exp cos( ) ,z z                                             (19)  

where β20 and β30 are the constants, and the parameters γ0 
and σ describe the Kerr nonlinearity. The instantaneous 
occurrence of the space dependent coefficients of disper-
sions of the form in Eq.(17) and Eq.(18) and the space 
dependent coefficient of the nonlinear term of the form 
in Eq.(19) especially plays a crucial role in the develop-
ment of such a pooled type of solitary wave. But for the 

stability of the propagation of such types of solitary 
waves, the binding of bright and dark solitary waves is 
very important and requires a proper intense optical 
pulse. For the analysis of the evolution characteristics of 
the chirped bright solitary like soliton, we offer the 
transmission plots in Fig.1 and Fig.2.  

In the numerical plot, the chirped bright solitary-like 
solution with λ0=0.5 for the case  2 3 0b     in 

Fig.1(a) is shown. From the figure, we find that the evo-
lution and stability of the pulse do not depend on the 
initial nonlinear chirp for sufficient pulse intensity. Due 
to the occurrence of the space dependent coefficients of 
GVD and TOD of the cosine type and the space depend-
ent coefficient of nonlinear effect SPM of the exponen-
tial cosine type, a strange type of chirped solitary like 
solution is developed where dark and bright solitons are 
in allied and the advancement of such a type of solitary 
wave is very stable against the nonlinear chirp and also 
under a high degree perturbation of the amplitude and 
noise. For further exploration of the stability of the soli-
ton-like solution, we have observed two types of numeri-
cal evolution under initial perturbation. In the first, we 
perturbed the amplitude to 90%, and finally we intro-
duced 20% white noise in the second. The outcomes are 
depicted in Fig.1(b) and Fig.1(c), respectively. 
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Fig.1 Progression of chirped bright solitary-like solu-
tion when (β2−bβ3)γ>0, β20=0.1, β30=−0.1, γ0=0.03, 
σ=2.09, c(z)=0 with (a) λ0=0.5, (b) λ0=0.5 and the am-
plitude is 90% of the exact solution, and (c) λ0=0.5 
and 20% white noise is added to the perturb solitary 
solution with 90% of the amplitude  

We revealed that small amplitude changes and the add-
ing up of white noise have no effect on the stability of the 
solitary-like solution. Fig.1(c) illustrates the advancement 
of a chirped bright soliton-like solution when 
 2 3 0b    with λ0=0.5 and 20% white noise is added 

to the solitary solution, which is 90% perturb in amplitude 
of exact solitary solution. When  2 3b  0  , we 

provide numerical evolution with λ0=2.1 in Fig.2(a). At 
first, we perturbed the amplitude to 90%, and finally we 
introduced 30% white noise in the second. The outcome 
is depicted in Fig.2(b). We notice that pulse progression 
is even now stable. 

We provide the chirped dark solitary-like solution 
propagation plot when  2 3 0b    with λ0=1.5 in 
Fig.3, and it clearly shows the simultaneous existence of 
both dark and bright solitory waves. The choice of the 
proper intense optical pulse is also very important for 
dark solitary wave. 

We provide the chirped dark solitary-like solution 
propagation plot when  2 3 0b    with λ0=1.2 as 
shown in Fig.4. 

 

 

 
Fig.2 Progression of chirped bright solitary-like solu-
tion when (β2−bβ3)γ<0, β20=0.1, β30=−0.1, γ0=−0.03, 
σ=3, c(z)=0 with (a) λ0=2.1 and (b) λ0=2.1 and 30% 
white noise is added to the perturb solitary solution 
with 90% of the amplitude 

 
Fig.3 Progression of chirped dark solitary-like solu-
tion when (β2−bβ3)γ>0, β20=0.1, β30=−0.1, γ0=0.03, 
σ=2.09, c(z)=0, and λ0=1.5 

 
Fig.4 Progression of chirped dark solitary-like solu-
tion when (β2−bβ3)γ<0, β20=0.1, β30=−0.1, γ0=−0.03, 
σ=3, c(z)=0, and λ0=1.2
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The intensity profile of the combined solitary waves at 
z=0 is shown in Fig.5 with λ0=0.5 and λ0=1.5 when 
 2 3 0.b     

 
Fig.5 Intensity variation of chirped bright (red) and 
dark (blue) solitary-like solutions at z=0 when 
(β2−bβ3)γ>0, β20=0.1, β30=−0.1, γ0=0.03, σ=2.09, c(z)=0     

In Fig.5, the curve of red color for λ0=0.5 represents 
the bright solitary wave and the plot of blue color for 
λ0=1.5 represents the dark solitary wave. 
    From Fig.5, we clearly notice that both bright and dark 
solitary waves are present and united. It is mentioned 
that the subsistence of the chirped solitary solution will 
be customised by the constriction relation in Eq.(11). 
    We have established an innovative type of chirped 
bright and dark solitary wave solutions by introducing 
nonlinear gain (loss) to the HNLSE together with peri-
odic altering coefficients, where they are in pooled form. 
For picoseconds optical pulses, we can precisely manage 
the nonlinear gain (loss) by precisely selecting the initial 
nonlinear chirp of the true communication system. With 
appropriate parametric conditions, even for ultra short 
optical pulses, we can also manipulate the nonlinear gain 
by choosing the proper form of the nonlinear chirp pa-
rameter. The parametric conditions for the subsistence of 
such a type of solitary wave are also revealed. By way of 
simulation, we have uncovered that such a chirped soli-
tary-like solution can propagate with high stability over a 
very long distance in the real fibre medium in the occur-
rence of a predetermined perturbation. This analysis may 
also offer insight into how we can supervise the nonlin-
ear gain or loss in the transmission of ultra-short optical 
pulses by introducing an initial nonlinear chirp in an au-
thentic system. 

Statements and Declarations   

The authors declare that there are no conflicts of interest 
related to this article. 

References 

[1] MERABI A, TRIKI H, AZZOUZI F, et al. Propagation 
properties of chirped optical similaritons with dual-
power law nonlinearity[J]. Chaos, solitons & fractals, 
2020, 140：110158. 

[2] TRIKI H, ZHOU Q, BISWAS A, et al. Self-frequency 
shift effect for chirped self-similar solitons in a tapered 
graded-indexed waveguide[J]. Optics communications, 
2020, 468：125800. 

[3] HOSSEIN K, SADRI K, MIRZAZADEH M, et al. A 
high-order nonlinear Schrodinger equation with the 
weak non-local nonlinearity and its optical solitons[J]. 
Results in physics, 2021, 23：104035. 

[4] PATHANIA S, GOYAL A, RAJU T S, et al. Chirped 
nonlinear resonant states in femtosecond fiber optics[J]. 
Optik, 2021, 227：166094. 

[5] WU G Z, DIA C Q, WANG Y Y, et al. Propagation and 
interaction between special fractional soliton molecule 
in the inhomogeneous medium[J]. Journal of advance 
research, 2022, 36：63-71. 

[6] TRIKI H, BENLALLI A, ZHOU Q, et al. Formation of 
chirped kink similariton in non-Kerr media with vary-
ing Raman effect[J]. Results in physics, 2021, 26：
104381. 

[7] KENGNE E, LAKHSSASSI A. Compensation process 
and generation of chirped femtosecond solitons and 
double-kink solitons in Bose-Einstein condensates with 
time-dependent atomic scattering length in a time-
varying complex potential[J]. Nonlinear dynamics, 
2021, 104：4221-4240. 

[8] WANG B H, WANG Y. YF ractional white noise func-
tional soliton solutions of a wick-type stochastic frac-
tional NLSE[J]. Applied mathematics letters, 2020, 
110：106583. 

[9] RAZA N, HASSAN Z, SEADAWY A. Computational 
soliton solutions for the variable coefficient nonlinear 
Schrödinger equation by collective variable method[J]. 
Optical and quantum electronics, 2021, 53：400. 

[10] ZHENG H, WU C, WANG Z, et al. Propagation char-
acteristics of chirped soliton in periodic distributed am-
plification systems with variable coefficients[J].  Optik, 
2012, 123：818-822. 

[11] HOUWE A, ABBAGARI S, INC M, et al. Chirped 
solitons in discrete electrical transmission line[J]. Re-
sults in physics, 2020, 18：103188. 

[12] TRIKI H, ZHOU K, BISWAS A, et al. Chirped optical 
solitons having polynomial law of nonlinear refractive 
index with self-steepening effect and nonlinear disper-
sion[J]. Physics letters A, 2021, 412：127698. 

[13] TRIKI H, ZHOU Q, MOSHOKOA S P, et al. Chirped 
W-shaped optical solitons of Chen-Lee-Liu equation[J]. 
Optik, 2018, 155：208-212. 

[14] DAOUI A K, AZZOUZI F, TRIKI H, et al. Propagation 
of chirped gray optical dips in nonlinear materials[J]. 
Optics communications, 2019, 430：461-466. 



·0640·                                                                                                                                                 Optoelectron. Lett. Vol.18 No.10 

 
 

[15] HOUWE A, ABBAGARI S, ALMOHSEN B, et al. 
Chirped solitary waves of the perturbed Chen-Lee-Liu 
equation and modulation instability in optical mono 
mode fibres[J]. Optical and quantum electronics, 2021, 
53：286. 

[16] SEADAWY A R, RIZVI S T R, MUSTAFA B, et al. 
Chirped periodic waves for an cubic-quintic nonlinear 
Schrödinger equation with self steepening and higher 
order nonlinearities[J]. Chaos, solitons & fractals, 2022, 
156：111804. 

[17] TRIKI H, BISWAS A, MILOVIC D, et al. Chirped 
femtosecond pulses in the higher-order nonlinear 

Schrödinger equation with non-Kerr nonlinear terms 
and cubic-quintic-septic nonlinearities[J]. Optics com-
munications, 2016, 366：362-369. 

[18] TRIKI H, PORSEZIAN K, GRELU P. Chirped soliton 
solutions for the generalized nonlinear Schrödinger 
equation with polynomial nonlinearity and non-Kerr 
terms of arbitrary order[J]. Journal of optics, 2016, 
18：075504.  

[19] SEADAWY A R, AHMED H M, RABIE W B, et al. 
Chirp-free optical solitons in fiber Bragg gratings with 
dispersive reflectivity having polynomial law of nonlin-
earity[J]. Optik, 2021, 225：165681. 

 
 
 
 
 


