
OPTOELECTRONICS LETTERS Vol.18 No.9, 15 September 2022

Field rapid detection method of wind turbine blade fixing
bolt defects based on FPGA

HOU Yupeng, ZHANG Lei*, WANG Yuanquan, ZHAO Xiaosong, FENG Guoce, and ZHANG Yirui

School of Artificial Intelligence, Hebei University of Technology, Tianjin 300130, China1

(Received 23 March 2022; Revised 16 May 2022)
©Tianjin University of Technology 2022

* E-mail: tjhouyupeng@163.com

In order to solve the problem that blade fixing bolt cannot be detected quickly and conveniently in the field in actual
production, this paper proposed a field rapid detection method of wind turbine blade fixing bolt defects based on field
programmable gate array (FPGA), and Yolov4-tiny is selected as the basic algorithm. Nonetheless, the original
Yolov4-tiny was not suitable for detecting small defects, so this paper improved the Yolov4-tiny to enhance the detec-
tion effect. Next, the convolutional operations in the algorithm were encapsulated into intellectual property (IP) cores
by high-level synthesis (HLS) and Vivado, and parallel computation was realized using FPGA features. In the end,
using Python to call the IP core and the FPGA hardware library, this paper achieved the purpose of rapid detection.
Compared with traditional detection methods and other algorithms, the accuracy and speed of this method are signifi-
cantly improved, which has a good application value.
Document code: A Article ID: 1673-1905(2022)09-0541-6
DOI https://doi.org/10.1007/s11801-022-2044-3

Fixing bolts have been widely used in wind turbine
blades due to their useful properties, such as high
strength, corrosion resistance, and stability[1]. In recent
years, with the increasing number of wind turbines all
over the world, the problem of wind turbine blades safety
has become increasingly serious. However, many wind
turbines are exposed to harsh environments all year
round and are in a long-term vibration state, which leads
to defects on the blade fixing bolts. At present, in order
to ensure the safe operation of wind turbines, the relevant
departments mainly use traditional methods such as ul-
trasonic flaw or computer vision to determine whether
defects or not. However, the defects location of ultra-
sonic detection is inaccurate and requires extensive work
experience, so the practicality is poor. Nowadays, the
defects detection algorithm based on computer vision has
become the focus of research[2], but with the continuous
development of neural networks, its computation is in-
creasing, and the requirements for the computational
power of devices are getting higher and higher. The ad-
vanced RISC machine (ARM)[3] is difficult to cope with
such a large amount of computational algorithm. The
graphics processing unit (GPU) is competent, but it is not
available for field detection. The field programmable
gate array (FPGA) has a powerful computing power[4],
which is very suitable for the computation of neural
networks, and FPGA will become the backbone of artifi-
cial intelligence in the future[5]. In this paper, a field
rapid detection method based on FPGA for fixing bolt of
the wind turbine blade is proposed. This method is sim-

pler than the ultrasonic method, more convenient than
the GPU method, and faster than the ARM method. At
the same time, this method also established a new work
mode for workers, solved the problem that the blade fix-
ing bolts in actual production cannot be detected quickly
and conveniently in the field.

The Yolov4-tiny method is designed on the basis of
the Yolov4 method, which is a simplified version of
Yolov4. Yolov4 has about 60 million parameters, while
Yolov4-tiny is reduced by nearly 90% and its inference
speed is increased by 6—8 times[6]. Moreover, its weight
file is only a few tens of MB, which greatly increases the
feasibility of deploying object detection methods in em-
bedded systems such as FPGA. Yolov4-tiny architecture
can be broken down into three blocks. The first block is
backbone network. Yolov4-tiny’s backbone network
Darknet53-tiny is mainly composed of the Darknet-
Conv2D_BN_Leaky module and Resblock_body module
stacked. The second block is the feature pyramid net-
work (FPN), which is used to separate important features
extracted from the backbone network. Yolov4-tiny head
is the third block, which uses dense prediction for an-
chor-based detection that helps in dividing the image into
multiple cells and inspecting each cell to find the prob-
ability of having an object using the post-processing
techniques[7]. The network architecture of Yolov4-tiny is
shown in Fig.1.

Due to the Yolov4-tiny detection network is relatively
simple, although it has a fast detection speed, it is suit-
able for deployment of FPGA, its feature extraction

·0542· Optoelectron. Lett. Vol.18 No.9

process is simple, and the detection accuracy is low, es-
pecially in the indistinguishable small defects detection,
the miss detection is more serious[8]. Therefore, it is dif-
ficult to meet the actual demand. In this paper, the spatial
pyramid pooling (SPP) module and the path aggregation
network (PAN) module are combined to improve detec-
tion capability for indistinguishable small defects. The
improved Yolov4-tiny structure is shown in Fig.2.

Fig.1 Yolov4-tiny network structure

Defects are often not accurately detected because the
size of the defects in the original image is not perfectly
uniform. Therefore, this paper added the SPP module
after the backbone network to increase the model’s abil-
ity to achieve multiple feature map variations in detect-
ing various defect sizes on all scales. The principle of the
SSP module is to convert feature maps of arbitrary size
into feature vectors of fixed size. The formulas are as
follows

h in
h

* 1 ,
2

k n hP      
 (1)

w in
w

* 1 ,
2

k n wP      
(2)

 where kh and kw represent the length and width of the
convolution kernel, n is the number of pooling, hin and
win represent the length and width of the output image,
and Ph and Pw represent the numbers of padding in the
length and width directions, respectively, to make the
image output a uniform size after the SPP module. The
processing steps of the SPP module are as follows.
Firstly, the input feature layer undergoes three convolu-
tion processing (the convolution kernel size is 1×1, 3×3,
and 1×1 respectively), and the number of channels is
reduced from 512 to 256. Secondly, SPP uses three
pooling layers (the kernel size is 3×3, 7×7, and 11×11,
respectively) to perform maximum pooling processing,
and the number of output channels of each pooling layer
is 256. Thirdly, SPP stacks the input of the previous step
and the output processed by the three pooling layers in
the channel dimension, and the number of channels be-
comes 1 024. Finally, after three convolution processed,
the number of channels output by the SPP module is re-
stored from 1 024 to 256. While the SPP module per-
forms multi-scale pooling and fusion on the input feature

layer, it also greatly enhances the receptive field of the
network and greatly improves the information extraction
capability of the input feature layer[9].

Because CSPDarknet53-tiny of Yolov4-tiny has only
two output feature layers converted to the predictive fea-
ture layer YoloHead, it is necessary to send the feature
information to the FPN module for fusion to enhance the
recognition ability of indistinguishable defects. However,
the FPN structure of Yolov4-tiny is too simple, and the
detection accuracy is not ideal. Based on the idea of fea-
ture fusion, this paper improved the network structure of
Yolov4-tiny and used PAN to replace the FPN module.
Compared with FPN, the strategy of repeated feature
extraction and mutual fusion of PAN is more compli-
cated, the PAN includes two paths of bottom-up and
top-down feature fusion. The formula for calculating
top-down path aggregation is shown as

2 1 1conv(()).i i iM Up P M    (3)

The bottom-up path aggregation formula is

2 1 1conv(()).i i iM Down P N    (4)

The resulting aggregated layer is
1

1

2
4 3,

5

i i

i i i i

i i

M P i
C M N P i

N P i





 
    
  

 (5)

where Mi is the top-down feature layer, Ni is the bot-
tom-up feature layer, Ci is the fused feature layer, and Pi
is the output of the backbone network.
 After the introduction of the SPP module, the second
output feature layer of the backbone network CSPDark-
net53-tiny will pass through the SPP module firstly and
then input the feature enhancement network PAN.
Yolov4-tiny contains two prediction scales only, 13×13
and 26×26. Two feature maps are output from the deeper
network, while the deeper network is easy to lose the
shallow edge information. For PAN, it also has two input
feature layers, F1 comes from the third Resblock_body
module of the backbone network CSPDarknet53-tiny, and
F2 comes from the SPP module. In the bottom-up fusion
path, after the input F2 is subjected to 1×1 convolution
processing and up sampling processing, it is stacked with
the input F1 that has also undergone convolution process-
ing in the channel dimension, and the number of channels
in the feature layer increases from 128 to 256. The first
output of PAN is obtained after the feature layer under-
goes three convolutions (with the convolution kernel sizes
of 1×1, 3×3, and 1×1, respectively). In the same way, in
the top-down path, the output of the first path is stacked
with the input F2 in the channel dimension after down
sampling to complete the compression of height and width,
and after three convolutions are completed, the first PAN
obtains two outputs. The YoloHead is composed of a
DarknetConv2D_BN_Leaky module with a convolution
kernel size of 3×3 and an ordinary two-dimensional con-
volutional layer with a convolution kernel size of 1×1. The
output is mainly used for the prior frame parameter

HOU et al. Optoelectron. Lett. Vol.18 No.9·0543·

adjustment. PAN uses the idea of bidirectional fusion to
construct a bottom-up and top-down bidirectional channel
to carry out a bidirectional fusion of information from
diverse layers of the trunk network, so as to alleviate the
loss of feature information caused by too many network

layers. The features from different scales are fused and
repeatedly enhanced, and the detailed information ex-
tracted by the backbone network can be fully utilized,
which can greatly improve the detection accuracy of this
algorithm.

Fig.2 Improved Yolov4-tiny network structure

This paper used Python productivity for Zynq

(PYNQ-Z2) embedded SOC developed by XILINX com-
pany. PYNQ is the first FPGA platform that supports Py-
thon. XILINX designed the Jupyter Notebooks environ-
ment for PYNQ[10]. PYNQ supports converting intellectual
property (IP) cores developed by high-level synthesis
(HLS) into overlay, and PYNQ provides Python library to
call overlay to achieve the purpose of Python calling IP
cores. PYNQ provides a complete underlying hardware
library file, and developers can implement Yolo algorithm
directly on Jupyter Notebooks without designing the un-
derlying logic circuit. PYNQ consists of two parts, ARM
and FPGA. The two parts are completely heterogeneous
computational tasks. The PS where the ARM of the
PYNQ-Z2 development platform is located is used for
logic control to perform tasks with high flexibility and low
computational load, including loading the Linux system,
FPGA basic hardware library, Ipython kernel and corre-
sponding application programming interface (API), and
Jupyter Notebooks web server, etc. PYNQ uses the PL
where the FPGA is located to perform the complex opera-
tions of the convolutional neural networks, and at the same
time completes the analysis of the control commands and

generate corresponding control signals to coordinate the
operation of the internal modules. Its architecture is illus-
trated in Fig.3.

Fig.3 PYNQ FPGA architecture diagram

Although the improved algorithm can improve the de-

tection effect, it cannot be directly deployed on the
PYNQ FPGA. In order to make the algorithm get a better
detection effect on FPGA, it is necessary to parallelize
the algorithm and encapsulate the IP core.

Neural networks contain a large number of convolution
operations, which are highly time-consuming. FPGA has
excellent parallel processing capability. If the convolu-
tion operation is parallelized, the operation speed of the
algorithm on the FPGA could be significantly improved.
The HLS adopts the design idea of PIPELINE. In the

·0544· Optoelectron. Lett. Vol.18 No.9

process of convolution calculation, the input/output fea-
ture maps of different channels have no data dependen-
cies in the process of being involved in the calculation,
so parallelization is feasible[11]. Usually, the convolution
for the loop is processed by folding. Folding means that
the same circuit is employed in each loop. The circuit is
time-multiplexed in the loop. If the loop is expanded, it
is equivalent to the circuit being by copying several cop-
ies, the effect of parallel computing can be achieved. The
convolution loop can be parallelized by using PIPELINE.
This statement is equivalent to unrolling the loop, that is,
the same circuit is copied several times to complete the
parallelization of the algorithm.

After the convolution operation is parallelized, it
needs to be packaged into an IP core before it can be
called in a Python program. Firstly, this paper simulated
and synthesized the designed parallelized program to
generate a convolution operation IP core by HLS. Sec-
ondly, this paper used the Vivado Block Design tool to
optimize and functionally simulate the overall circuit,
and generated bit files and tcl files for the designed cir-
cuit. Finally, we imported the bit files, tcl files, and hwh
files with the same file names into the folder of
PYNQ-Z2 FPGA[12].

Due to the particularity of the actual situation, bolt de-
tection usually needs to be carried out on-site, so the de-
tection environment is more complicated. In this paper,
we built a custom dataset using wind farm field defect
data. While collecting the image dataset, we used indus-
trial cameras to quickly sample defective bolts regularly,
bright, dark, and disturbing conditions. Then, the image
data were preprocessed by data processing techniques to
obtain the RGB image dataset in the format of VOC[13],
with an image size of 416×416 and a number of 1 000
images. The images in the dataset were randomly se-
lected according to the algorithm rules and assigned to
the training set, test set, and validation set in the ratio of
7: 2: 1. The defect types were bolt cracks that were dif-
ficult to be distinguished directly by professionals, and
the defects dataset is shown in Fig.4.

(a) Regular (b) Bright

(c) Dark (d) Disturbing

Fig.4 Dataset examples

The original Yolov4-tiny, Yolox-tiny, and the im-
proved Yolov4-tiny algorithm are used for deep learning
training in the PC (GTX 1060 GPU) environment with

the Pytorch deep learning framework, and the number of
iterations is 300. After the training is completed, accord-
ing to the training information in the results, a visual
drawing is performed to obtain the comparison chart of
the loss value (Loss) and the mean average precision
(mAP_0.5), as shown in Fig.5.

In Fig.5, the green curve is the Loss and mAP values
of the original Yolov4-tiny algorithm, the blue curve is
the Loss and mAP values when only the SPP module is
added, the yellow curve is the Loss and mAP values
when only the PAN module is replaced, the black curve
is the Loss and mAP of Yolox-tiny, and the red curve is
the final improved Loss and mAP values. In this figure,
it can be seen intuitively that the Loss and mAP values of
the improved algorithm have improved to a certain ex-
tent[14]. With the increase of the number of iterations, the
loss value is constantly decreasing. The performance
shown by Loss and mAP in the training session shows
that Yolov4-tiny-SPP+PAN achieves the best perform-
ance, its mAP is up to 97.2%, and the Loss is less than
0.7. By combining the mAP and Loss metrics, it can be
inferred that the improved Yolov4-tiny network model is
ideal for the training session.

Fig.5 Model performance evaluation results

To evaluate the improved Yolov4-tiny performance,
different structural improvement experiments have been
conducted and the impact of each improved part of the
algorithm on the model training and detection accuracy
has been listed in this paper, as shown in Tab.1. It’s

HOU et al. Optoelectron. Lett. Vol.18 No.9·0545·

obvious that the SPP+PAN module significantly im-
proved the feature extraction for Yolov4-tiny. What’s
more, this paper also used another two indicators to cal-
culate the detection accuracy and detection speed of
three platforms respectively. The evaluation indicators
are the mAP value and FPS value. The formulas are as
follows

1

1mAP ,
n

i
i

AP
n 

 

(6)

FPS .FigureNumber
TotalTime

 (7)

In the above formula, mAP refers to the mean accu-
racy obtained by dividing the area of the RP curve by the
number of defect categories, and FPS refers to the total
number of inspection pictures divided by the detection
time[15]. The corresponding data are shown in Tab.2.

After the device is connected correctly, the specific
detection steps are as follows. First, the location of the

device should be determined. We placed the device on a
bench or flat ground in the field wind turbine cabin, con-
nect the power supply and display. Then, we run the
top-level Python program in Jupyter Notebooks, and
placed the bolt to be tested about 5 cm away from the
FPGA hardware platform, then the FPGA will detect it. It
is necessary to manually rotate and adjust the position of
the bolt to check whether all sides of the bolt are normal.
Finally, the detection results will be displayed on Jupyter
Notebooks. The detection results are shown in Fig.6.

The results achieved by the improved algorithm as in
Tab.2 shows that performance is better than the original
algorithm, where the accuracy reaches 97.2% compared
to the original algorithm 90.3%. Although the detection
effect of the same algorithm is reduced by about 2% on
the PYNQ FPGA platform compared to other platforms,
the FPS reaches 46.6 compared to the GPU 32.0 and
ARM 23.2. Therefore, the comprehensive performance
of the improved Yolov4-tiny on FPGA is superior.

Tab.1 Comparison of Loss and mAP values of different structures and algorithms

Indicators Yolov4-tiny Yolov4-tiny-SPP Yolov4-tiny-PAN Yolox-tiny Yolov4-tiny-SPP+PAN

Loss 0.84 0.76 0.70 0.68 0.61
Recall (%) 92.3 93.1 95.1 94.5 96.9

Precision (%) 92.1 92.7 95.8 95.3 97.4

mAP_0.5 (%) 90.3 92.5 95.6 96.1 97.2

Tab.2 Comparison of algorithm improvement effects on different platforms

Platform types
Original algorithm average

detection accuracy (%)
Improved algorithm average

detection accuracy (%)
Original algorithm average

detection speed (fps)
Improved algorithm average

detection speed (fps)

PYNQ FPGA 89.6 95.3 47.8 46.6

GTX1060 PC 90.3 97.2 34.5 32.0

Cortex-A9 ARM 90.1 96.9 25.7 23.2

(a) Regular (b) Bright

(c) Dark (d) Disturbing

Fig.6 Example of detection results

Tab.3 Logical resource utilization

Resource Utilization Available

LUT 10 274 53 200
LUTRAM 614 17 400

FF 6 889 106 400
BRAM 79 140

DSP 185 220

In addition, this paper explored the resource utilization

of PYNQ FPGA, based on comprehensive reports pro-
vided by the Vivado tool[16]. It can be seen from Tab.3
that there are many remaining resources available on the
PYNQ FPGA, so the resource utilization of the improved
algorithm in this paper is reasonable.

As the traditional bolt defects detection methods can-
not achieve field rapid detection in wind farms, this pa-
per proposed a field rapid detection method for wind
turbine blade fixing bolt defects based on FPGA. This
paper made structural improvements to Yolov4-tiny, that
is, adding the SPP module and replacing FPN with PAN
to improve the detection ability of Yolov4-tiny. Then the
improved Yolov4-tiny is ported to FPGA by HLS,
Vivado, and FPGA technology. Experimental results
showed that the field rapid detection method for wind
turbine blade fixing bolts based on FPGA is better and
more convenient than the traditional methods, and the
model of improved Yolov4-tiny is better than the model

·0546· Optoelectron. Lett. Vol.18 No.9

of original Yolov4-tiny and Yolox-tiny, so this method
has strong field adaptability and wide application value.
However, this paper still has many shortcomings, for
example, although the improved Yolov4-tiny can en-
hance the detection accuracy, it will increase the compu
tation, which may deviate from the original purpose of
Yolov4-tiny in order to reduce the number of parameters.
In addition, this paper has less optimization effort for the
algorithm on the FPGA.

Statements and Declarations

The authors declare that there are no conflicts of interest
related to this article.

References

[1] YU G A, QIN Z W, RONG X M, et al. Research on the
influence of defects on the performance of bolted con-
nections of wind turbine blades[J]. Acta Energiae Solaris
Sinica, 2019, 40(11)：3244-3249. (in Chinese)

[2] TAO X, HOU W, XU D, et al. A review of surface defect
detection methods based on deep learning[J]. Acta
Automatica Sinica, 2021, 47(05)：877-879. (in Chinese)

[3] YU W Y, ZHANG Y, YAO H M, et al. Visual inspection
of surface defects based on lightweight reconstruction
network[J]. Acta Automatica Sinica, 2020,
41(16)：1-12. (in Chinese)

[4] CHEN C, CHAI Z L, XIA J. Design and implementation
of YOLOv2 accelerator based on Zynq 7000 FPGA het-
erogeneous platform[J]. Journal of frontiers of computer
science & technology, 2019, 13(10)：1677-1693. (in
Chinese)

[5] ADIONO T, PUTRA A, SUTISNA A, et al. Low latency
YOLOv3-tiny accelerator for low-cost FPGA using
general matrix multiplication principle[J]. IEEE access,
2021, 9(08)：141890-141913.

[6] ZHU J, WANG J L, WANG B. Lightweight mask de-
tection algorithm based on improved YOLOv4-tiny[J].
Chinese journal of liquid crystals and displays, 2021,
36(11)：1525-1534. (in Chinese)

[7] LI F D, GAO D Y, YANG Y Q. Small target deep con-
volution recognition algorithm based on improved
YOLOv4[J]. International journal of machine learning
and cybernetics, 2022, 3(12)：982-990.

[8] ADIBHATLA A, CHIH H, HSU C, et al. Defect detec-
tion in printed circuit boards using you-only-look-once
convolutional neural networks[J]. Electronics, 2020,
9(09)：1547-1563.

[9] ADDIE I B, TOFAEL A. Real time pear fruit detection
and counting using YOLOv4 models and deep SORT[J].
Sensors, 2021, 21(14)：4803-4811.

[10] MÁNDI Á, MÁTÉ J, RÓZSA D, et al. Hardware accel-
erated image processing on FPGA based PYNQ-Z2
board[J]. Carpathian journal of electronic and computer
engineering, 2021, 14(01)：20-23.

[11] BJERGE K, SCHOUGAARD J H, LARSEN D E. A
scalable and efficient convolutional neural network ac-
celerator using HLS for a system-on-chip design[J].
Microprocessors and microsystems, 2021,
87(03)：198-206.

[12] HUYNH T V. FPGA-based acceleration for convolu-
tional neural networks on PYNQ-Z2[J]. International
journal of computing and digital systems, 2022,
11(01)：441-450.

[13] MENG T, TAO Y, CHEN Z Q. Depth evaluation for
metal surface defects by eddy current testing using deep
residual convolutional neural networks[J]. IEEE trans-
actions on instrumentation and measurement, 2021,
70(02)：1862-1871.

[14] BOUGUEZZI S, BEN F H, BELABED T, et al. An
efficient FPGA-based convolutional neural network for
classification：Ad-MobileNet[J]. Electronics, 2021,
10(18)：2272-2283.

[15] REN Z H, FANG F Z, YAN N, et al. State of the art in
defect detection based on machine vision[J]. Interna-
tional journal of precision engineering and manufactur-
ing-green technology, 2021, 2(06)：1-31.

[16] LIU J, GE Y F. Reconfigurable convolutional neural
network accelerator based on ZYNQ[J]. Chinese journal
of electronics, 2021, 49(04)：729-735.

