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In order to solve the problem that blade fixing bolt cannot be detected quickly and conveniently in the field in actual 
production, this paper proposed a field rapid detection method of wind turbine blade fixing bolt defects based on field 
programmable gate array (FPGA), and Yolov4-tiny is selected as the basic algorithm. Nonetheless, the original 
Yolov4-tiny was not suitable for detecting small defects, so this paper improved the Yolov4-tiny to enhance the detec-
tion effect. Next, the convolutional operations in the algorithm were encapsulated into intellectual property (IP) cores 
by high-level synthesis (HLS) and Vivado, and parallel computation was realized using FPGA features. In the end, 
using Python to call the IP core and the FPGA hardware library, this paper achieved the purpose of rapid detection. 
Compared with traditional detection methods and other algorithms, the accuracy and speed of this method are signifi-
cantly improved, which has a good application value.  
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Fixing bolts have been widely used in wind turbine 
blades due to their useful properties, such as high 
strength, corrosion resistance, and stability[1]. In recent 
years, with the increasing number of wind turbines all 
over the world, the problem of wind turbine blades safety 
has become increasingly serious. However, many wind 
turbines are exposed to harsh environments all year 
round and are in a long-term vibration state, which leads 
to defects on the blade fixing bolts. At present, in order 
to ensure the safe operation of wind turbines, the relevant 
departments mainly use traditional methods such as ul-
trasonic flaw or computer vision to determine whether 
defects or not. However, the defects location of ultra-
sonic detection is inaccurate and requires extensive work 
experience, so the practicality is poor. Nowadays, the 
defects detection algorithm based on computer vision has 
become the focus of research[2], but with the continuous 
development of neural networks, its computation is in-
creasing, and the requirements for the computational 
power of devices are getting higher and higher. The ad-
vanced RISC machine (ARM)[3] is difficult to cope with 
such a large amount of computational algorithm. The 
graphics processing unit (GPU) is competent, but it is not 
available for field detection. The field programmable 
gate array (FPGA) has a powerful computing power[4], 
which is very suitable for the computation of neural 
networks, and FPGA will become the backbone of artifi-
cial intelligence in the future[5]. In this paper, a field 
rapid detection method based on FPGA for fixing bolt of 
the wind turbine blade is proposed. This method is sim-

pler than the ultrasonic method, more convenient than 
the GPU method, and faster than the ARM method. At 
the same time, this method also established a new work 
mode for workers, solved the problem that the blade fix-
ing bolts in actual production cannot be detected quickly 
and conveniently in the field. 

The Yolov4-tiny method is designed on the basis of 
the Yolov4 method, which is a simplified version of 
Yolov4. Yolov4 has about 60 million parameters, while 
Yolov4-tiny is reduced by nearly 90% and its inference 
speed is increased by 6—8 times[6]. Moreover, its weight 
file is only a few tens of MB, which greatly increases the 
feasibility of deploying object detection methods in em-
bedded systems such as FPGA. Yolov4-tiny architecture 
can be broken down into three blocks. The first block is 
backbone network. Yolov4-tiny’s backbone network 
Darknet53-tiny is mainly composed of the Darknet-
Conv2D_BN_Leaky module and Resblock_body module 
stacked. The second block is the feature pyramid net-
work (FPN), which is used to separate important features 
extracted from the backbone network. Yolov4-tiny head 
is the third block, which uses dense prediction for an-
chor-based detection that helps in dividing the image into 
multiple cells and inspecting each cell to find the prob-
ability of having an object using the post-processing 
techniques[7]. The network architecture of Yolov4-tiny is 
shown in Fig.1.  

Due to the Yolov4-tiny detection network is relatively 
simple, although it has a fast detection speed, it is suit-
able for deployment of FPGA, its feature extraction 
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process is simple, and the detection accuracy is low, es-
pecially in the indistinguishable small defects detection, 
the miss detection is more serious[8]. Therefore, it is dif-
ficult to meet the actual demand. In this paper, the spatial 
pyramid pooling (SPP) module and the path aggregation 
network (PAN) module are combined to improve detec-
tion capability for indistinguishable small defects. The 
improved Yolov4-tiny structure is shown in Fig.2.   
 

 
Fig.1 Yolov4-tiny network structure 

Defects are often not accurately detected because the 
size of the defects in the original image is not perfectly 
uniform. Therefore, this paper added the SPP module 
after the backbone network to increase the model’s abil-
ity to achieve multiple feature map variations in detect-
ing various defect sizes on all scales. The principle of the 
SSP module is to convert feature maps of arbitrary size 
into feature vectors of fixed size. The formulas are as 
follows 
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 where kh and kw represent the length and width of the 
convolution kernel, n is the number of pooling, hin and 
win represent the length and width of the output image, 
and Ph and Pw represent the numbers of padding in the 
length and width directions, respectively, to make the 
image output a uniform size after the SPP module. The 
processing steps of the SPP module are as follows. 
Firstly, the input feature layer undergoes three convolu-
tion processing (the convolution kernel size is 1×1, 3×3, 
and 1×1 respectively), and the number of channels is 
reduced from 512 to 256. Secondly, SPP uses three 
pooling layers (the kernel size is 3×3, 7×7, and 11×11, 
respectively) to perform maximum pooling processing, 
and the number of output channels of each pooling layer 
is 256. Thirdly, SPP stacks the input of the previous step 
and the output processed by the three pooling layers in 
the channel dimension, and the number of channels be-
comes 1 024. Finally, after three convolution processed, 
the number of channels output by the SPP module is re-
stored from 1 024 to 256. While the SPP module per-
forms multi-scale pooling and fusion on the input feature 

layer, it also greatly enhances the receptive field of the 
network and greatly improves the information extraction 
capability of the input feature layer[9]. 

Because CSPDarknet53-tiny of Yolov4-tiny has only 
two output feature layers converted to the predictive fea-
ture layer YoloHead, it is necessary to send the feature 
information to the FPN module for fusion to enhance the 
recognition ability of indistinguishable defects. However, 
the FPN structure of Yolov4-tiny is too simple, and the 
detection accuracy is not ideal. Based on the idea of fea-
ture fusion, this paper improved the network structure of 
Yolov4-tiny and used PAN to replace the FPN module. 
Compared with FPN, the strategy of repeated feature 
extraction and mutual fusion of PAN is more compli-
cated, the PAN includes two paths of bottom-up and 
top-down feature fusion. The formula for calculating 
top-down path aggregation is shown as 

2 1 1conv( ( ) ).i i iM Up P M                   (3) 

The bottom-up path aggregation formula is 
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where Mi is the top-down feature layer, Ni is the bot-
tom-up feature layer, Ci is the fused feature layer, and Pi 
is the output of the backbone network. 
  After the introduction of the SPP module, the second 
output feature layer of the backbone network CSPDark-
net53-tiny will pass through the SPP module firstly and 
then input the feature enhancement network PAN. 
Yolov4-tiny contains two prediction scales only, 13×13 
and 26×26. Two feature maps are output from the deeper 
network, while the deeper network is easy to lose the 
shallow edge information. For PAN, it also has two input 
feature layers, F1 comes from the third Resblock_body 
module of the backbone network CSPDarknet53-tiny, and 
F2 comes from the SPP module. In the bottom-up fusion 
path, after the input F2 is subjected to 1×1 convolution 
processing and up sampling processing, it is stacked with 
the input F1 that has also undergone convolution process-
ing in the channel dimension, and the number of channels 
in the feature layer increases from 128 to 256. The first 
output of PAN is obtained after the feature layer under-
goes three convolutions (with the convolution kernel sizes 
of 1×1, 3×3, and 1×1, respectively). In the same way, in 
the top-down path, the output of the first path is stacked 
with the input F2 in the channel dimension after down 
sampling to complete the compression of height and width, 
and after three convolutions are completed, the first PAN 
obtains two outputs. The YoloHead is composed of a 
DarknetConv2D_BN_Leaky module with a convolution 
kernel size of 3×3 and an ordinary two-dimensional con-
volutional layer with a convolution kernel size of 1×1. The 
output is mainly used for the prior frame parameter
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adjustment. PAN uses the idea of bidirectional fusion to 
construct a bottom-up and top-down bidirectional channel 
to carry out a bidirectional fusion of information from 
diverse layers of the trunk network, so as to alleviate the 
loss of feature information caused by too many network 

layers. The features from different scales are fused and 
repeatedly enhanced, and the detailed information ex-
tracted by the backbone network can be fully utilized, 
which can greatly improve the detection accuracy of this 
algorithm. 

 

 

Fig.2 Improved Yolov4-tiny network structure  
 
This paper used Python productivity for Zynq 

(PYNQ-Z2) embedded SOC developed by XILINX com-
pany. PYNQ is the first FPGA platform that supports Py-
thon. XILINX designed the Jupyter Notebooks environ-
ment for PYNQ[10]. PYNQ supports converting intellectual 
property (IP) cores developed by high-level synthesis 
(HLS) into overlay, and PYNQ provides Python library to 
call overlay to achieve the purpose of Python calling IP 
cores. PYNQ provides a complete underlying hardware 
library file, and developers can implement Yolo algorithm 
directly on Jupyter Notebooks without designing the un-
derlying logic circuit. PYNQ consists of two parts, ARM 
and FPGA. The two parts are completely heterogeneous 
computational tasks. The PS where the ARM of the 
PYNQ-Z2 development platform is located is used for 
logic control to perform tasks with high flexibility and low 
computational load, including loading the Linux system, 
FPGA basic hardware library, Ipython kernel and corre-
sponding application programming interface (API), and 
Jupyter Notebooks web server, etc. PYNQ uses the PL 
where the FPGA is located to perform the complex opera-
tions of the convolutional neural networks, and at the same 
time completes the analysis of the control commands and 

generate corresponding control signals to coordinate the 
operation of the internal modules. Its architecture is illus-
trated in Fig.3. 

 

 

Fig.3 PYNQ FPGA architecture diagram 
 
Although the improved algorithm can improve the de-

tection effect, it cannot be directly deployed on the 
PYNQ FPGA. In order to make the algorithm get a better 
detection effect on FPGA, it is necessary to parallelize 
the algorithm and encapsulate the IP core. 

Neural networks contain a large number of convolution 
operations, which are highly time-consuming. FPGA has 
excellent parallel processing capability. If the convolu-
tion operation is parallelized, the operation speed of the 
algorithm on the FPGA could be significantly improved. 
The HLS adopts the design idea of PIPELINE. In the 
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process of convolution calculation, the input/output fea-
ture maps of different channels have no data dependen-
cies in the process of being involved in the calculation, 
so parallelization is feasible[11]. Usually, the convolution 
for the loop is processed by folding. Folding means that 
the same circuit is employed in each loop. The circuit is 
time-multiplexed in the loop. If the loop is expanded, it 
is equivalent to the circuit being by copying several cop-
ies, the effect of parallel computing can be achieved. The 
convolution loop can be parallelized by using PIPELINE. 
This statement is equivalent to unrolling the loop, that is, 
the same circuit is copied several times to complete the 
parallelization of the algorithm. 

After the convolution operation is parallelized, it 
needs to be packaged into an IP core before it can be 
called in a Python program. Firstly, this paper simulated 
and synthesized the designed parallelized program to 
generate a convolution operation IP core by HLS. Sec-
ondly, this paper used the Vivado Block Design tool to 
optimize and functionally simulate the overall circuit, 
and generated bit files and tcl files for the designed cir-
cuit. Finally, we imported the bit files, tcl files, and hwh 
files with the same file names into the folder of 
PYNQ-Z2 FPGA[12]. 

Due to the particularity of the actual situation, bolt de-
tection usually needs to be carried out on-site, so the de-
tection environment is more complicated. In this paper, 
we built a custom dataset using wind farm field defect 
data. While collecting the image dataset, we used indus-
trial cameras to quickly sample defective bolts regularly, 
bright, dark, and disturbing conditions. Then, the image 
data were preprocessed by data processing techniques to 
obtain the RGB image dataset in the format of VOC[13], 
with an image size of 416×416 and a number of 1 000 
images. The images in the dataset were randomly se-
lected according to the algorithm rules and assigned to 
the training set, test set, and validation set in the ratio of 
7: 2: 1. The defect types were bolt cracks that were dif-
ficult to be distinguished directly by professionals, and 
the defects dataset is shown in Fig.4. 

   

(a) Regular (b) Bright 

 
(c) Dark (d) Disturbing 

Fig.4 Dataset examples 

The original Yolov4-tiny, Yolox-tiny, and the im-
proved Yolov4-tiny algorithm are used for deep learning 
training in the PC (GTX 1060 GPU) environment with 

the Pytorch deep learning framework, and the number of 
iterations is 300. After the training is completed, accord-
ing to the training information in the results, a visual 
drawing is performed to obtain the comparison chart of 
the loss value (Loss) and the mean average precision 
(mAP_0.5), as shown in Fig.5.  

In Fig.5, the green curve is the Loss and mAP values 
of the original Yolov4-tiny algorithm, the blue curve is 
the Loss and mAP values when only the SPP module is 
added, the yellow curve is the Loss and mAP values  
when only the PAN module is replaced, the black curve 
is the Loss and mAP of Yolox-tiny, and the red curve is 
the final improved Loss and mAP values. In this figure, 
it can be seen intuitively that the Loss and mAP values of 
the improved algorithm have improved to a certain ex-
tent[14]. With the increase of the number of iterations, the 
loss value is constantly decreasing. The performance 
shown by Loss and mAP in the training session shows 
that Yolov4-tiny-SPP+PAN achieves the best perform-
ance, its mAP is up to 97.2%, and the Loss is less than 
0.7. By combining the mAP and Loss metrics, it can be 
inferred that the improved Yolov4-tiny network model is 
ideal for the training session. 

 

 
 

 

Fig.5 Model performance evaluation results 

To evaluate the improved Yolov4-tiny performance, 
different structural improvement experiments have been 
conducted and the impact of each improved part of the 
algorithm on the model training and detection accuracy 
has been listed in this paper, as shown in Tab.1. It’s 
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obvious that the SPP+PAN module significantly im-
proved the feature extraction for Yolov4-tiny. What’s 
more, this paper also used another two indicators to cal-
culate the detection accuracy and detection speed of 
three platforms respectively. The evaluation indicators 
are the mAP value and FPS value. The formulas are as 
follows 

1

1mAP ,
n

i
i

AP
n 
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(6) 
 

FPS .FigureNumber
TotalTime

                       (7) 

In the above formula, mAP refers to the mean accu-
racy obtained by dividing the area of the RP curve by the 
number of defect categories, and FPS refers to the total 
number of inspection pictures divided by the detection 
time[15]. The corresponding data are shown in Tab.2. 

After the device is connected correctly, the specific 
detection steps are as follows. First, the location of the  

device should be determined. We placed the device on a 
bench or flat ground in the field wind turbine cabin, con-
nect the power supply and display. Then, we run the 
top-level Python program in Jupyter Notebooks, and 
placed the bolt to be tested about 5 cm away from the 
FPGA hardware platform, then the FPGA will detect it. It 
is necessary to manually rotate and adjust the position of 
the bolt to check whether all sides of the bolt are normal. 
Finally, the detection results will be displayed on Jupyter 
Notebooks. The detection results are shown in Fig.6. 

The results achieved by the improved algorithm as in 
Tab.2 shows that performance is better than the original 
algorithm, where the accuracy reaches 97.2% compared 
to the original algorithm 90.3%. Although the detection 
effect of the same algorithm is reduced by about 2% on 
the PYNQ FPGA platform compared to other platforms, 
the FPS reaches 46.6 compared to the GPU 32.0 and 
ARM 23.2. Therefore, the comprehensive performance 
of the improved Yolov4-tiny on FPGA is superior. 

 
Tab.1 Comparison of Loss and mAP values of different structures and algorithms 

Indicators Yolov4-tiny Yolov4-tiny-SPP Yolov4-tiny-PAN Yolox-tiny Yolov4-tiny-SPP+PAN 

Loss 0.84 0.76 0.70 0.68 0.61 
Recall (%) 92.3 93.1 95.1 94.5 96.9 

Precision (%) 92.1 92.7 95.8 95.3 97.4 

mAP_0.5 (%) 90.3 92.5 95.6 96.1 97.2 
 

Tab.2 Comparison of algorithm improvement effects on different platforms 

Platform types 
Original algorithm average 

detection accuracy (%) 
Improved algorithm average 

detection accuracy (%) 
Original algorithm average 

detection speed (fps) 
Improved algorithm average 

detection speed (fps) 

PYNQ FPGA 89.6 95.3 47.8 46.6 

GTX1060 PC 90.3 97.2 34.5 32.0 

Cortex-A9 ARM 90.1 96.9 25.7 23.2 

  

    
(a) Regular               (b) Bright 

    
(c) Dark                (d) Disturbing 

Fig.6 Example of detection results 

Tab.3 Logical resource utilization 

Resource Utilization Available 

LUT 10 274 53 200 
LUTRAM 614 17 400 

FF 6 889 106 400 
BRAM 79 140 

DSP 185 220 
 

 
In addition, this paper explored the resource utilization 

of PYNQ FPGA, based on comprehensive reports pro-
vided by the Vivado tool[16]. It can be seen from Tab.3 
that there are many remaining resources available on the 
PYNQ FPGA, so the resource utilization of the improved 
algorithm in this paper is reasonable. 

As the traditional bolt defects detection methods can-
not achieve field rapid detection in wind farms, this pa-
per proposed a field rapid detection method for wind  
turbine blade fixing bolt defects based on FPGA. This 
paper made structural improvements to Yolov4-tiny, that 
is, adding the SPP module and replacing FPN with PAN 
to improve the detection ability of Yolov4-tiny. Then the 
improved Yolov4-tiny is ported to FPGA by HLS, 
Vivado, and FPGA technology. Experimental results 
showed that the field rapid detection method for wind 
turbine blade fixing bolts based on FPGA is better and 
more convenient than the traditional methods, and the 
model of improved Yolov4-tiny is better than the model 
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of original Yolov4-tiny and Yolox-tiny, so this method 
has strong field adaptability and wide application value. 
However, this paper still has many shortcomings, for 
example, although the improved Yolov4-tiny can en-
hance the detection accuracy, it will increase the compu 
tation, which may deviate from the original purpose of 
Yolov4-tiny in order to reduce the number of parameters. 
In addition, this paper has less optimization effort for the 
algorithm on the FPGA.  
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