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Optimization of optical convolution kernel of optoelec-
tronic hybrid convolution neural network*
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To enhance the optical computation's utilization efficiency, we develop an optimization method for optical convolution 

kernel in the optoelectronic hybrid convolution neural network (OHCNN). To comply with the actual calculation pro-

cess, the convolution kernel is expanded from single-channel to two-channel, containing positive and negative weights. 

The Fashion-MNIST dataset is used to test the network architecture's accuracy, and the accuracy is improved by 7.5% 

with the optimized optical convolution kernel. The energy efficiency ratio (EER) of two-channel network is 46.7% 

higher than that of the single-channel network, and it is 2.53 times of that of traditional electronic products. 
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Fast and low-power image recognition technology is 

essential in unmanned mobile devices. Convolution neu-

ral network (CNN) can deal with the variability of 

two-dimensional (2D) shapes and is widely used in  

image analysis of unmanned mobile devices[1,2]. Al-

though graphics processing unit (GPU) accelerator, field 

programmable gate array (FPGA), and other unique cus-

tomized electronic architectures for CNN have made 

significant progress, large matrix multiplication of the 

image and video generated by these devices consumes 

power overly. Reducing CNN's power consumption can 

extend the working time of unmanned equipment. Thus, 

many groups have widely developed fast and low-power 

platforms for CNN. 

Neuromorphic photonics is an emerging field at the 

intersection of photonics and neuromorphic engineering. 

It can accelerate the processing of information and 

broaden the bandwidth[3]. SHEN et al[4] proposed a novel 

architecture for an optical neural network, which com-

prised an optical interference unit (OIU) and an optical 

nonlinearity unit (ONU). Its accuracy is 76.7%, and the 

power efficiency is three orders than conventional learn-

ing tasks. However, the all-optical CNN photonic neural 

network is difficult to realize. BANGARI et al[5] pro-

posed a digital electronic and analog photonic scheme, 

suited for CNN, which is 2.8—14 times faster than a 

GPU with only 0.75 time of the energy consumption. 

ONG et al[6] proposed a scalable architecture for pho- 

tonic and electronic convolutional neural networks using 

the Fourier transform property of star couplers. To opti-

mize the optoelectronic hybrid convolution neural net-

work (OHCNN) structure, PAI et al[7] explored mesh 

architecture improvements to enhance these devices' 

training speed and scalability, such as adding extra tun-

able beam-splitters or permuting waveguide layers. 

YING et al[8] showed a more efficient architecture that 

uses a sparse tree network block, a single unitary block, 

and a diagonal block for each neural network layer. The 

Mach-Zehnder interferometers (MZIs) area cost is less 

than various sizes of optical neural networks. 

In our previous work[9], the photoelectric hybrid neural 

network is developed. This network has an accuracy rate 

of 88.79%, and the energy efficiency ratio (EER) is 1.73 

times of that of traditional electronic products. In this 

paper, we build an OHCNN composed of OIU and 

FPGA. The OIU performs multiplication and accumula-

tion operations, which are composed of MZIs array. 

FPGA caches data, controls OIU, and implements non-

linear activation, simultaneously. First, the convolution 

kernel layer is split and reorganized. Then, it is encoded 

and modulated by FPGA. To maximize the optical com-

putation's utilization efficiency, we develop an optimiza-

tion method for the optical convolution kernel in the 

OHCNN. This method enables optical calculation's value 
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with both positive and negative weights. Meanwhile, an 

analysis framework is adopted to determine the recogni-

tion accuracy of the OHCNN and estimate the final 

power consumption. This method provides a fast and 

low-power blueprint for the real-time identification of 

unmanned equipment. 

CNN consists of a set of successive layers of convolu-

tion, pooling, nonlinearities, and a final fully connected 

layer (FCL) (depicted in Fig.1(a)). Generally, CNN can be 

computed by forwarding propagation and then optimized 

with back-propagation. Convolution and pooling can be 

realized by linear combinations (e.g. matrix multiplica-

tion). FCL maps the convolution output to a set of classi-

fication outputs. As we know, the superposition of several 

small kernels reduces computational complexity when the 

connectivity remains unchanged. However, overly small 

kernels cannot represent the map's characteristics. Thus, 

multiple suitable kernels are chosen in convolution.  

 
Fig.1 General architecture of OHCNN: (a) CNN operational logic; (b) OHCNN schematic implementation; Universal 
unitary matrix proposed by (c) RECK et al and (d) CLEMENTS et al; (e) MZI schematic 

The convolution layer consists of N kernels (N 1). 

Every nc×nc convolution kernel is a channel (nc 1). 

Computation for a single node in the output channel 
1Az  

(A N) is shown as 

1 11 12 13 111 12 13 1Act(( + +
jA A A A A jz c x c x c x c x� � � � �� �  

1 2 3 11 2 3 ) ),
i i i i jA i A i A i A ij Ac x c x c x c x b� � � � ��    (1) 

where 
i jAc  (i, j=1, 2, 3, , nc) is the kernel for channels 

A, xij (i, j=1, 2, 3, , nc) is input, and 
1Ab is the bias. 

As shown in Fig.1(b), the OHCNN consists of an OIU 

and an FPGA. Here, OIU implements convolution. 

FPGA realizes nonlinear activation, pooling and FCL, 

controls the OIU, encodes the input, and calls OIU re-

peatedly, simultaneously. The optical intensity of OIU is 

converted to an electrical signal by a photodetector (PD). 

In our previous work[9], three 3×3 kernels and rectified 

linear unit (ReLU) nonlinear activation function are used 

in each convolution layer. FCL maps the convolution 

output to a set of labels and selects the label with the 

maximum probability value as the prediction label based 

on probability values obtained by SOFTMAX.  

OIU can implement any real-valued m×n matrix (M). 

As depicted in Fig.1(b), matrix M can be implemented 

using a mesh of OIU. It can be decomposed using singu-

lar value decomposition (SVD) as  
 
M→UΣV T,                                (2) 

where U is an m×m unitary matrix, V T is the complex 

conjugate of the n×n unitary matrix V, and Σ is an m×n 

diagonal matrix with non-negative-real numbers on the 

diagonal. Any unitary matrix U can be decomposed into 

a product of Tm,n(θ, φ)[10,11] as  
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where S is a specific ordered domain belonging to (m, n). 

D is a diagonal matrix with complex elements and its 

modulus equal to 1 on the diagonal. An MZI can imple-

ment Tm,n(θ, φ), consisting of two 50:50 directional cou-

plers, a phase shift φ at one input port and another phase 

shift θ on interference arm (depicted in Fig.1(e)). Tm,n(θ, 

φ) can be expressed as 
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Phase shifter θ in the middle of MZI's two arms con-

trols the splitting ratio of the output modes. Phase shifter 

φ in the middle of two MZIs controls the relative phase 

of the output mode. Here, the transformation between 

channels m and n (m=n−1) corresponds to a lossless 

beam splitter between channels m and n with reflectivity 

cosθ (θ [0, π/2]) and a phase shift φ (φ [0, 2π]) at 

input m[10]. A universal n-D unitary matrix can be im-

plemented using n(n−1)/2 MZIs, and the arrangement of 

these MZIs can be organized in Fig.1(c) proposed by 

RECK et al [11] or in Fig.1(d) proposed by CLEMENTS 

et al[10]. Optical attenuators or optical amplification ma-

terials can implement Σ operation[12]. 
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The Fashion-MNIST is a ten-category clothing dataset, 

including 60 000 training sets and 10 000 testing sets. 

Each image in the dataset contains 28×28 pixels, and 

these numbers are normalized and fixed in the center. 

Different from the MNIST dataset, the Fashion-MNIST 

dataset is no longer an abstract number symbol, but a 

more specific clothing type. The image is compressed to 

4 bits, and then 16-pulse amplitude modulation (PAM16) 

converts image information into optical signals. We train 

the matrix parameters with the stochastic gradient de-

scent method. In the simulation state, each batch of data 

is 300, the number of cycles is 10, the loss function is the 

cross-entropy function, and the optimizer is the Adam 

optimizer, and the learning rate is 0.01. 

To reduce MZIs in CNN and enhance the working ef-

ficiency, we develop a new decomposition method for 

the convolution kernel. As depicted in Fig.2(a), taking 

three 3×3 kernels Ci as an example, each row of the ker-

nel Ci matches each row of the sub-image X. Ci is di-

vided into three rows. Thus, these three convolution ker-

nels' ith row converts into a new matrix Ci' of 3×3. Then, 

a linear matrix operation is executed between Ci' and the 

sub-image's ith row Xi. Eventually, the sub-image's 

characteristic matrix Y is obtained as 
3

T

1

.i i
i�


� ��Y C X                             (5) 

Each 3×3 OIU can implement a Ci'. Ci' is realized with  
 

9 MZIs and 18 phase shifting elements (shown in 

Fig.2(b)). This method can realize any w h×h kernels. 

The matrix should be padded with zero, when w/3≠0 or 

(h2)/3≠0. 

Due to the optical devices' particularity, optical com-

putation for realizing negative number operation is limi- 

ted. To maximize the efficiency of optical computing, 

the new convolution kernel Ci' and input Xi are expanded 

from single-channel to two-channel, which contains posi- 

tive and negative information, respectively (depicted in 

Fig.2(a)). 
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where Ci
'+ and Ci

'- are the positive and negative values of 

Ci'. Xi
+ and Xi

- are the positive and negative values of Xi. 

The ReLU activation function was adopted, and the input 

information Xi received by OIU is all positive. The for-

mula can be simplified as 
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where |Ci
'-| is the absolute value of Ci

'-. We implement 

Ci
'+ and |Ci

'-| by OIU (shown in Fig.2(b)). The data is 

collected by a PD and subtracted in the electrical field, 

and then the negative value's operation result is saved.  

  
Fig.2 (a) Photonics convolution kernel optimized logic (The three convolution kernels' ith row converts into a new 
3×3 matrix Ci', which is decomposed into Ci

+ and |Ci
-|, and the positive and negative channels run separately); (b) 

Illustration of optical interference unit 

The resolution of PD and phase encoding limit the recognition precision. Phase encoding noise (σφ) and PD 



0184                                                                           Optoelectron. Lett. Vol.18 No.3  

noise (σD) are randomly perturbed with a Gaussian dis-

tribution. As depicted in Fig.3, different network training 

accuracies are obtained with different σφ and σD, realized 

by the transfer matrix method in the INTERCONNECT 

(Lumerical). The basic parameters are set as follows.  

For the optical source, wavelength is 1 550 nm, power 

is 18 mW, and half-height width is 20 pm. For the de-

tector, response wavelength is 1 550 nm, and the dark 

current is 20 nA. 

Then, a suitable bit of voltage resolution per channel 

can be chosen. The output data from OIU is activated by 

the ReLU function and followed by an FCL and 

SOFTMAX activation function. Here, FPGA implements 

the nonlinear transformation Eout=f (Ein), followed by 

ARAM caching and reorganizing. Then, Eout injects into 

the next stage of the optical amplitude modulator. FPGA 

calls OIU repeatedly. Thus, the whole network can be 

realized by only two OIUs. 

It is challenging to achieve all-optical CNNs. Here, 

FPGA implements nonlinearity and data storage. Such 

hybrid architecture has more straightforward implemen-

tation and on-chip integration. The optical convolution 

kernel is optimized in the calculation process, which re-

tains the negative result and amplifies the optical calcu-

lation's efficiency.  

 

 
 

 
Fig.3 (a) The accuracy of network with various phase 
encoding errors σφ; (b) The accuracy of network with 
various PD errors σD  

 

The overall accuracy rate is limited by σφ and σD. 

Simulation results are plotted in Fig.3. The classification 

accuracy of the network is 89%, when an error distribu-

tion is σφ≤0.01. The σφ =0.01 corresponds to an 8-bit ac-

curacy in the phase setting. The classification accuracy 

of the network is 85%, when an error distribution is 

σD≤0.02. The σD=0.02 corresponds to the dark current of 

PD of 20 nA. Accuracy rate and confusion matrix of the 

OHCNN for the Fashion-MNIST dataset are show in 

Fig.4. Accuracy comparison of single-channel network 

and two-channel network is shown in Fig.4(c). The ac-

curacy of two-channel network is 87.4%, which is 7.5% 

higher than that of the single-channel network. It is simi-

lar to NVDIA Tesla P100[13]. To alleviate the network's 

complexity, we could focus on researching lightweight 

neural networks and binary neural networks suitable for 

small-scale OIU in the future. 

The working speed of OHCNN (SOHCNN) is limited by 

analog-to-digital converter/digital-to-analog converter 

ADC/DAC (used on PAM16) speed. In Ref.[9], the 

power of ADC/DAC (used on PAM16, PP_ADC) is about 

200 mW, when its speed is 5 GHz. We used multiplica-

tion and accumulation (MAC) to measure the operating 

performance of OHCNN. Tera floating-point operations 

per second can be calculated according to TFlops= MAC× 

SOHCNN×10-12. We estimate the energy consumption of 

the system to be dominated by the OIU's ADC (PO_ADC = 

0.026 W)[5], the OIU's optical modulators (PO_MOD ≈3 μW, 

which can be negligible), the ADC/DAC used on 

PAM16  (PP_ADC=0.1 W)[5], the optical modulators in 

PAM16  (PP_MOD=0.2 W)[14], PD (PPD=0.2 W)[15], opti-

cal source (POS), and thermal stabilization (PTS). The 

EER is TFlops/Ptotal, where Ptotal is the total energy con-

sumption of the system. 

total

TFlopsEER
P

� �    

total_PAM total_MZI total_PD TS OS

,
+

TFlops
P P P P P� � �

      (8) 

total_PAM P_MOD P_ADC PAM( ) 4,P P P n� � � �           (9) 

total_MZI O_ADC MZI 2,P P n� � �                   (10) 

total_PD PD PD ,P P n� �                         (11) 

where nPAM, nMZI and nPD are the numbers of PAM16s, 

MZIs and PDs, respectively. The nPAM, nMZI, nPD, PTS and 

POS in single-channel network and two-channel network 

are shown in Tab.1. 

The TFlops, Ptotal and EER of NVDIA Tesla P100[13] 

in single-channel network and two-channel network are 

shown in Tab.2. The EER of this work is 0.022 3 

TFlops/W, which is 46.7% higher than that of sin-

gle-channel network and is 2.53 times of that of NVDIA 

Tesla P100.  

The power consumption is proportional to the number 

of convolution cores. Simultaneously, the transformation 

between the optical and electric signals with electronic 

circuits would increase the total power consumption. 

Nonlinear activation can be completed in the optical do-

main[16]. The data can be directly transferred to the next 

layer without photoelectric conversion, reducing power 

consumption.  
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Fig.4 Accuracy, loss and confusion matrix of the OHCNN for the Fashion-MNIST dataset: (a) Single-channel 
convolution kernel network; (b) Optimized two-channel convolution kernel network; (c) Accuracy comparison of 
single-channel network and two-channel network 

 
Tab.1 nPAM, nMZI, nPD, PTS and POS in single-channel 
network and two-channel network 
 

 nPAM nMZI nPD PTS (W) POS (W) 

Single-channel 9 27 3 4 0.009 

Two-channel 9 54 6 8 0.018 

 
In this paper, we used the optical-electronic hybrid 

Tab.2 TFlops, Ptotal and EER of NVDIA Tesla P100, 
single-channel network and two-channel network 
 

 TFlops 
 

Ptotal 
(W) 

EER 
(TFlops/W) 

NVIDIA 2.65 300 0.008 8 

Single-channel 255×10-3 16.81 0.015 2 

Two-channel 510×10-3 22.83 0.022 3 
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setup mode to realize CNN. The OIU, composed of 

MZIs array, performs multiplication and accumulation 

operations. The convolution kernel layer is split and re-

organized, and FPGA encodes and modulates its weight. 

The convolution kernel is expanded from single-channel 

to two-channel, containing positive and negative weights. 

Here, FPGA realizes nonlinear activation, data schedul-

ing and storage, phase encoding, and modulation. The 

power consumption is proportional to the number of 

convolution cores. The Fashion-MNIST dataset is used 

to test the optimized two-channel convolution kernel 

network architecture's accuracy. The accuracy is 87.4%, 

which is 7.5% higher than that of the single-channel 

convolution kernel network. The EER of this work is 

0.022 3 TFlops/W, which is 46.7% higher than that of 

single-channel network. It needs to be emphasized that 

the power consumption related to data movement is still 

an urgent challenge in the current neural network archi-

tecture. It is necessary to explore optical nonlinear and 

optical interconnection to realize all-optical computation.  
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