Acceptor concentration dependent Fo?rster resonance energy transfer in nanocrystal-molecule complexes revealed by spectral analysis*
Affiliation:

Hubei University of Arts and Science

Fund Project:

the National Natural Science Foundation of China (22279031), Joint Foundation for Innovation and Development of Hubei Natural Science Foundation (2023AFD032 and 2022CFD079),Teacher Research Ability Cultivation Foundation of Hubei University of Arts and Science (2020kypytd001 and 2021kpgj01),Hubei Key Laboratory of Low Dimensional Optoelectronic Material and Devices (HLOM241003 and HLOM242013)

  • Article
  • | |
  • Metrics
  • |
  • Reference [37]
  • | |
  • Cited by
  • | |
  • Comments
    Abstract:

    A nanocrystal-molecule complex composed of CdSe donor and Rhodamine B (RhB) acceptor is prepared to investigate the effect of accepter-donor ratio on the Fo?rster resonance energy transfer (FRET) process. To highlight the FRET process, the energy level alignment between CdSe and RhB is purposefully designed and CdSe nanocrystal is coated with a wide band-gap ZnS shell. The carrier dynamics is observed via combined spectral analysis. The results reveal clear FRET process between the CdSe donor and RhB acceptor. The FRET is enhanced by increasing RhB/CdSe ratio and a gradual saturation will be present at high RhB concentration.

    Reference
    [1] FORSTER T. Intermolecular energy transfer and fluorescence[J]. Annual Physics Leipzig, 1948, 2, 55-75.
    [2] WANG Y, YANG J, FANG M, et al. F?rster resonance energy transfer: an efficient way to develop stimulus-responsive room-temperature phosphorescence materials and their applications[J]. Matter, 2020, 3(2): 449-463.
    [3] WU L, HUANG C, EMERY B P, et al. F?rster resonance energy transfer (FRET)-based small-molecule sensors and imaging agents[J]. Chemical Society Reviews, 2020, 49(15): 5110-5139.
    [4] KUSS-PETERMANN M, WENGER O S. Increasing Electron-Transfer Rates with Increasing Donor-Acceptor Distance[J]. Angewandte Chemie International Edition, 2016, 55(2): 815-819.
    [5] ANDREW P, BARNES W L. Forster energy transfer in an optical microcavity[J]. Science, 2000, 290(5492): 785-788.
    [6] FAN X, WANG S, YANG X, et al. Brightened Bicomponent Perovskite Nanocomposite Based on F?rster Resonance Energy Transfer for Micro‐LED Displays[J]. Advanced Materials, 2023, 35(30): 2300834.
    [7] CHO K S, LEE E K, JOO W J, et al. High-performance crosslinked colloidal quantum-dot light-emitting diodes[J]. Nature Photonics, 2009, 3(6): 341-345.
    [8] WANG H, YANG D, DING P, et al. Dual F?rster resonance energy transfer effects enables high photocurrent density and high fill factor in ternary organic solar cells[J]. Chemical Engineering Journal, 2023, 474: 145395.
    [9] HUYNH W U, DITTMER J J, ALIVISATOS A P. Hybrid nanorod-polymer solar cells[J]. Science, 2002, 295(5564): 2425-2427.
    [10] MARX V. Probes: FRET sensor design and optimization[J]. Nature methods, 2017, 14(10): 949-953.
    [11] MEDINTZ I L, CLAPP A R, MATTOUSSI H, et al. Self-assembled nanoscale biosensors based on quantum dot FRET donors[J]. Nature materials, 2003, 2(9): 630-638.
    [12] INAMDAR S R, PUJAR G H, SANNAIKAR M S. FRET from ZnSe/ZnS QDs to coumarin dyes: Role of acceptor dipole moment and QD surface states on FRET efficiency[J]. Journal of Luminescence, 2018, 203: 67-73.
    [13] QIN H, WANG C, XU J, et al. High perovskite-to-manganese energy transfer efficiency in single-component white-emitting Mn-doped halide perovskite quantum dots[J]. Journal of Materials Science, 2020, 55(7): 2984-2993.
    [14] MCHUGH K J, JING L H, BEHRENS A M, et al. Biocompatible semiconductor quantum dots as cancer imaging agents[J]. Advanced Materials, 2018, 30(18): 1706356.
    [15] XIA C, MEELDIJK J D, GERRITSEN H C, et al. Highly luminescent water-dispersible NIR-emitting wurtzite CuInS2/ZnS core/shell colloidal quantum dots[J]. Chemistry of Materials, 2017, 29(11): 4940-4951.
    [16] YANG G, SHI S, ZHANG X, et al. Ultrafast photophysical process of bi-exciton Auger recombination in CuInS 2 quantum dots studied by transient-absorption spectroscopy[J]. Optics Express, 2021, 29(6): 9012-9020.
    [17] MURRAY C B, NORRIS D J, BAWENDI M G. Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites[J]. Journal of the American Chemical Society, 1993, 115(19): 8706-8715.
    [18] TALAPIN D V, ROGACH A L, KORNOWSKI A, et al. Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine? trioctylphosphine oxide-trioctylphospine mixture[J]. Nano Letters, 2001, 1(4): 207-211.
    [19] KALYUZHNY G, MURRAY R W. Ligand effects on optical properties of CdSe nanocrystals[J]. The Journal of Physical Chemistry B, 2005, 109(15): 7012-7021.
    [20] Sandhya KM, Das B C. Plasmonic hot carrier induced photosensitization of CdSe quantum dots: role of phonons[J]. The Journal of Physical Chemistry C, 2020, 124(22): 12095-12105.
    [21] MARANDI M, TORABI N, FARAHANI F A. Facile fabrication of well-performing CdS/CdSe quantum dot sensitized solar cells through a fast and effective formation of the CdSe nanocrystalline layer[J]. Solar Energy, 2020, 207: 32-39.
    [22] KONG D, JIA Y, REN Y, et al. Shell-thickness-dependent biexciton lifetime in type I and quasi-type II CdSe@ CdS core/shell quantum dots[J]. The Journal of Physical Chemistry C, 2018, 122(25): 14091-14098.
    [23] QU L, PENG X. Control of photoluminescence properties of CdSe nanocrystals in growth[J]. Journal of the American Chemical Society, 2002, 124(9): 2049-2055.
    [24] DAI S, SU Y S, CHUNG S R, et al. Controlling the magic size of white light-emitting CdSe quantum dots[J]. Nanoscale, 2018, 10(21): 10256-10261.
    [25] BOULESBAA A, HUANG Z, WU D, et al. Competition between energy and electron transfer from CdSe QDs to adsorbed rhodamine B[J]. The Journal of Physical Chemistry C, 2010, 114(2): 962-969.
    [26] BOULESBAA A, ISSAC A, STOCKWELL D, et al. Ultrafast charge separation at CdS quantum dot/rhodamine B molecule interface[J]. Journal of the American Chemical Society, 2007, 129(49): 15132-15133.
    [27] ZHU H, SONG N, LIAN T. Controlling charge separation and recombination rates in CdSe/ZnS type I core? shell quantum dots by shell thicknesses[J]. Journal of the American Chemical Society, 2010, 132(42): 15038-15045.
    [28] LIN X, CHEN Z, HAN Y, et al. ZnSe/ZnS core/shell quantum dots as triplet sensitizers toward visible-to-ultraviolet B photon upconversion[J]. ACS Energy Letters, 2022, 7(3): 914-919.
    [29] JASIENIAK J, SMITH L, VAN EMBDEN J, et al. Re-examination of the size-dependent absorption properties of CdSe quantum dots[J]. The Journal of Physical Chemistry C, 2009, 113(45): 19468-19474.
    [30] LUO X, HAN Y, CHEN Z, et al. Mechanisms of triplet energy transfer across the inorganic nanocrystal/organic molecule interface[J]. Nature Communications, 2020, 11(1): 28.
    [31] ZHANG J, YANG G, HE B, et al. Electron transfer kinetics in CdS/Pt heterojunction photocatalyst during water splitting[J]. Chinese Journal of Catalysis, 2022, 43(10): 2530-2538.
    [32] YANG G, LIU L, SHI S, et al. Size‐dependent Auger recombination in CdSe quantum dots studied by transient absorption spectroscopy[J]. Journal of the Chinese Chemical Society, 2021, 68(11): 2054-2059.
    [33] XIE R, RUTHERFORD M, PENG X. Formation of high-quality I-III-VI semiconductor nanocrystals by tuning relative reactivity of cationic precursors[J]. Journal of the American Chemical Society, 2009, 131(15): 5691-5697.
    [34] STEWART M H, HUSTON A L, SCOTT A M, et al. Competition between Fo?rster Resonance Energy Transfer and Electron Transfer in Stoichiometrically Assembled Semiconductor Quantum Dot-Fullerene Conjugates[J]. Acs Nano, 2013, 7(10): 9489-9505.
    [35] GAO Y, PENG X. Photogenerated excitons in plain core CdSe nanocrystals with unity radiative decay in single channel: the effects of surface and ligands[J]. Journal of the American Chemical Society, 2015, 137(12): 4230-4235.
    [36] LI J J, WANG Y A, GUO W, et al. Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction[J]. Journal of the American Chemical Society, 2003, 125(41): 12567-12575.
    [37] WANG L, LIU L, ZHANG R, et al. Carrier dynamics competition in the nanocrystal-molecule complex for triplet generation studied by transient-absorption spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2024, 320: 124658.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation
Share
Article Metrics
  • Abstract:30
  • PDF: 0
  • HTML: 0
  • Cited by: 0
History
  • Received:October 24,2024
  • Revised:November 27,2024
  • Adopted:December 11,2024
Article QR Code