Room-temperature nitrogen-rich niobium nitride photodetector for terahertz detection
CSTR:
Author:
Affiliation:

Department of Physics, Mathematics & Science College, Shanghai Normal University, Shanghai 200234, China

  • Article
  • | |
  • Metrics
  • |
  • Reference [25]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    A sensitive room-temperature metal-semiconductor-metal (MSM) structure is fabricated on high-resistivity silicon substrates (ρ>4 000 Ω.cm) for terahertz (THz) detection by utilizing the photoconductive effect. When radiation is absorbed by the nitrogen-rich niobium nitride, the number of free electrons and electrical conductivity increase. The detector without an attached antenna boasts a voltage responsivity of 7 058 V/W at a frequency of 310 GHz as well as small noise density of 3.5 nV/Hz0.5 for a noise equivalent power of about 0.5 pW/Hz0.5. The device fabricated by the standard silicon processing technology has large potential in high-sensitivity THz remote sensing, communication, and materials detection.

    Reference
    [1] RAYKO I S, YU X, THIERRY B, et al. Real-time terahertz imaging with a single-pixel etector[J]. Nature communication, 2020, 11:225351-225358.
    [2] COCKER T L, JELIC V, HILLENBRAND R, et al. Nanoscale terahertz scanning probe microscopy[J]. Nature photonics, 2021, 15:558-569.
    [3] JIN M H, WANG Y X, CHAI M Q, et al. Terahertz detectors based on carbon nanomaterials[J]. Advanced functional materials, 2022, 32, 2107499:1-16.
    [4] MAENG I H, CHEN S, LEE S J, et al. Predicted THz-wave absorption properties observed in all-inorganic perovskite CsPbI3 thin films:integrity at the grain boundary[J]. Materials today physics, 2023, 30:100960 1-7.
    [5] LI M Y, XU H, WANG S L, et al. Ion-bolometric effect in grain boundaries enabled high photovoltage response for NIR to terahertz photodetection[J]. Advanced functional materials, 2023, 33, 2213970:1-9.
    [6] ZHENG Z P, ZHAO S Y, LIU Y H, et al. Discrimination of maleic hydrazide polymorphs using terahertz spectroscopy and density functional theory[J]. Optoelectronics letters, 2023, 19(8):493-497.
    [7] BAI Y K, LI S. Terahertz dual-beam leaky-wave antenna based on composite spoof surface plasmon waveguide[J]. Optoelectronics letters, 2023, 19(2):72-76.
    [8] WELP U, KADOWAKI K, KLEINER R. Superconducting emitters of THz radiation[J]. Nature photonics, 2013, 7:702-710.
    [9] YANG H H, REBEIZ G M. Sub-10 pW/Hz0.5 room temperature Ni nano-bolometer[J]. Applied physics letters, 2016, 108:053096.
    [10] DYAKONOV M I, SHUR M S. Shallow water analogy for a ballistic field effect transistor:new mechanism of plasma wave generation by DC current[J]. Physical review letters, 1993, 71:2465.
    [11] VICARELLI L, VITIELLO M S, COQUILLAT D, et al. Graphene field-effect transistors as room-temperature terahertz detectors[J]. Nature materials, 2012, 11:865.
    [12] KNAP W, DYAKONOV M, COQUILLAT D, et al. Field effect transistors for terahertz detection:physics and first imaging applications[J]. International journal of infrared and millimeter waves, 2009, 30:1319-1337.
    [13] SCHUSTER F, COQUILLAT D, VIDELIER H, et al. Broadband terahertz imaging with highly sensitive silicon CMOS detectors[J]. Optics express, 2011, 19:7827-7832.
    [14] TAUK R, TEPPE F, BOUBANGA S, et al. Plasma wave detection of terahertz radiation by silicon field effects transistors:responsivity and noise equivalent power[J]. Applied physics letters, 2006, 89:253511.
    [15] HUANG Z M, TONG J C, HUANG J G, et al. Room-temperature photoconductivity far below the semiconductor bandgap[J]. Advanced materials, 2014, 26:6594-6598.
    [16] HUANG Z M, ZHOU W, TONG J C, et al. Extreme sensitivity of room-temperature photoelectric effect for terahertz detection[J]. Advanced materials, 2016, 28:112-117.
    [17] LU X H, JING C B, WANG L W, et al. Improved room-temperature silicon terahertz photodetector on sapphire substrate[J]. Chinese physics letters, 2019, 36:098501.
    [18] SIEGEL P H. Terahertz technology[J]. IEEE transactions on microwave theory and techniques, 2002, 50:910.
    [19] HUBERS H W. Terahertz heterodyne receivers[J]. IEEE journal of selected topics in quantum electronics, 2008, 14:378.
    [20] AHMAD Z, LISAUSKAS A, ROSKOS H G, et al. 9.74-THz electronic far-infrared detection using Schottky barrier diodes in CMOS[J]. IEEE international electron devices meeting, 2014, 14:92-95.
    [21] WESTLUND A, SANGARE P, DUCOURNAU G, et al. Terahertz detection in zero-bias InAs self-switching diodes at room temperature[J]. Applied physics letters, 2013, 103:133504.
    [22] VICARELLI L, VITIELLO M, COQUILLAT D, et al. Graphene field-effect transistors as room-temperature terahertz detectors[J]. Nature materials, 2012, 11:865.
    [23] TONG J Y, MUTHEE M, CHEN S Y, et al. Antenna enhanced graphene THz emitter and detector[J]. Nano letters, 2015, 15:5295.
    [24] GENERALOV A A, ANDERSSON M A, YANG X X, et al. A 400-GHz graphene FET detector[J]. IEEE transactions on terahertz science and technology, 2017, 7:614.
    [25] GUO W L, WANG L, CHEN X S, et al. Graphene based
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

LU Xuehui, LIU Binding, CHI Chengzhu, LIU Feng, SHI Wangzhou. Room-temperature nitrogen-rich niobium nitride photodetector for terahertz detection[J]. Optoelectronics Letters,2024,20(11):641-646

Copy
Share
Article Metrics
  • Abstract:86
  • PDF: 0
  • HTML: 0
  • Cited by: 0
History
  • Received:October 31,2023
  • Revised:April 03,2024
  • Online: September 30,2024
Article QR Code