Marine Organism Classification Method based on Hier-archical Multi-Scale Attention Mechanism
DOI:
Author:
Affiliation:

Qingdao University of Science and Technology

Clc Number:

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    We propose a hierarchical multi-scale attention mechanism-based model in response to the low accuracy and inefficient manual classification of existing oceanic biological image classification methods. Firstly, the H-EMA module is designed for lightweight feature extraction, achieving outstanding performance at a relatively low cost. Secondly, an improved Ef-ficientNetV2 Block is used to integrate information from different scales better and enhance inter-layer message passing. Furthermore, introducing the CBAM module enhances the model's perception of critical features, optimizing its generali-zation ability. Lastly, Focal Loss is introduced to adjust the weights of complex samples to address the issue of imbal-anced categories in the dataset, further improving the model's performance. The model achieved 96.11% accuracy on the intertidal marine organism dataset of Nanji Islands and 84.78% accuracy on the CIFAR-100 dataset, demonstrating its strong generalization ability to meet the demands of oceanic biological image classification.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 22,2024
  • Revised:June 04,2024
  • Adopted:July 03,2024
  • Online:
  • Published: