Evaluating quality of motion for unsupervised video object segmentation
Author:
Affiliation:

Jiangsu Key Laboratory of Big Data Analysis Technology, Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Current mainstream unsupervised video object segmentation (UVOS) approaches typically incorporate optical flow as motion information to locate the primary objects in coherent video frames. However, they fuse appearance and motion information without evaluating the quality of the optical flow. When poor-quality optical flow is used for the interaction with the appearance information, it introduces significant noise and leads to a decline in overall performance. To alleviate this issue, we first employ a quality evaluation module (QEM) to evaluate the optical flow. Then, we select high-quality optical flow as motion cues to fuse with the appearance information, which can prevent poor-quality optical flow from diverting the network’s attention. Moreover, we design an appearance-guided fusion module (AGFM) to better integrate appearance and motion information. Extensive experiments on several widely utilized datasets, including DAVIS-16, FBMS-59, and YouTube-Objects, demonstrate that the proposed method outperforms existing methods.

    Reference
    Related
    Cited by
Get Citation

CHENG Guanjun, SONG Huihui. Evaluating quality of motion for unsupervised video object segmentation[J]. Optoelectronics Letters,2024,20(6):379-384

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 24,2023
  • Revised:November 25,2023
  • Adopted:
  • Online: April 29,2024
  • Published: