Simulation design of thin film lithium niobate electro-optic modulator with bimetallic layer electrodes
CSTR:
Author:
Affiliation:

1. Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350108, China;2. University of Chinese Academy of Sciences, Beijing 100059, China;3. Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China

  • Article
  • | |
  • Metrics
  • |
  • Reference [17]
  • | | | |
  • Comments
    Abstract:

    Thin-film lithium niobate electro-optical modulator will become the key device in the future optical communication, which has the advantages of high modulation rate, low half-wave voltage, large bandwidth, and easy integration compared with conventional bulk lithium niobate modulator. However, because the electrode gap of the lithium niobate film modulator is very narrow, when the microwave frequency gets higher, it leads to higher microwave loss, and the electro-optical performance of the modulator will be greatly reduced. Here, we propose a thin film lithium niobate electro-optic modulator with a bimetallic layer electrode structure to achieve microwave loss less than 8 dB/cm in the range of 200 GHz, exhibiting a voltage-length product of 1.1 V∙cm and a 3 dB electro-optic bandwidth greater than 160 GHz. High-speed data transmission test has been performed, showing good performance.

    Reference
    [1] HAFFNER C, CHELLADURAI D, FEDORYSHYN Y, et al. Low-loss plasmon-assisted electro-optic modulator[J]. Nature, 2018, 556(7702):483-486.
    [2] PHARE C T, LEE Y H D, CARDENAS J, et al. Graphene electro-optic modulator with 30 GHz bandwidth[J]. Nature photonics, 2015, 9(8):511-514.
    [3] HAN J H, BOEUF F, FUJIKATA J, et al. Efficient low-loss InGaAsP/Si hybrid MOS optical modulator[J]. Nature photonics, 2017, 11(8):486-490.
    [4] LEE M, KATZ H E, ERBEN C, et al. Broadband modulation of light by using an electro-optic polymer[J]. Science, 2002, 298(5597):1401-1403.
    [5] ALLOATTI L, PALMER R, DIEBOLD S, et al. 100 GHz silicon-organic hybrid modulator[J]. Light:science & applications, 2014, 3(5):e173.
    [6] WANG C, ZHANG M, CHEN X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages[J]. Nature, 2018, 562:101-104.
    [7] HE M, XU M, REN Y, et al. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbits-1 and beyond[J]. Nature photonics, 2019, 13:359-364.
    [8] AHMED A N R, SHI S, MERCANTE A, et al. High-efficiency lithium niobate modulator for K band
    operation[J]. APL photonics, 2020, 5:091302.
    [9] PRASHANTA K, CHRISTIAN R, KEVIN L, et al. Breaking voltage-bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes[J]. Optica, 2021, 8:357-363.
    [10] GHIONE G. Semiconductor devices for high-speed optoelectronics[M]. Oxford:Oxford University, 2009.
    [11] AOKI K, KONDOU J, MITOMI O, et al. Velocity-matching conditions for ultrahigh-speed optical LiNbO3 modulators with traveling-wave electrode[J]. Japanese journal of applied physics, 2006, 45:8696-8698.
    [12] GU J H, WU B Y. Analysis on the microwave attenuation coefficient of traveling-wave electrodes with complicated cross-sections in Ti:LiNbO3 optical modulators[J]. Acta electronica sinica, 1998, 26(6):58-61.
    [13] RAO A, FATHPOUR S. Compact lithium niobate electrooptic modulators[J]. IEEE journal of selected topics in quantum electronics, 2018, 24(4):1-14.
    [14] FRANKEL Y, GUPTA S, VALDMANIS J A, et al. Terahertz attenuation and dispersion characteristics of coplanar transmission lines[J]. IEEE transactions on microwave theory and techniques, 1991, 39(6):910-916.
    [15] YU L Y, SHANG J M, LUO K W, et al. Design of high-speed mid-infrared electro-optic modulator based on thin film lithium niobate[J]. IEEE photonics journal, 2022, 14(2):1-6.
    [16] ANDREW J M, YAO P, SHI S Y, et al. 110 GHz CMOS compatible thin film LiNbO3 modulator on silicon[J]. Optics express, 2016, 24:15590-15595.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

WU Qiulin, FENG Xinkai, CHEN Jiaying, MA Lei, CHEN Huaixi, LIANG Wanguo. Simulation design of thin film lithium niobate electro-optic modulator with bimetallic layer electrodes[J]. Optoelectronics Letters,2024,20(6):339-345

Copy
Share
Article Metrics
  • Abstract:231
  • PDF: 19
  • HTML: 0
  • Cited by: 0
History
  • Received:July 26,2023
  • Revised:October 07,2023
  • Online: April 29,2024
Article QR Code