InGaN multiple quantum well based light-emitting diodes with indium composition gradient InGaN quantum barriers
CSTR:
Author:
Affiliation:

1. National Center for International Joint Research of Electronic Materials and Systems, International Joint-Laboratory of Electronic Materials and Systems of Henan Province, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China;2. Institute of Intelligence Sensing, Zhengzhou University, Zhengzhou 450001, China;3. Research Institute of Industrial Technology Co., Ltd., Zhengzhou University, Zhengzhou 450001, China;4. Zhengzhou Way Do Electronics Co., Ltd., Zhengzhou 450001, China;5. School of Electrical and Information Engineering, North Minzu University, Yinchuan 750001, China

  • Article
  • | |
  • Metrics
  • |
  • Reference [26]
  • | | | |
  • Comments
    Abstract:

    To improve the internal quantum efficiency (IQE) and light output power of InGaN light-emitting diodes (LEDs), we proposed an In-composition gradient increase and decrease InGaN quantum barrier structure. Through analysis of its P-I graph, carrier concentration, and energy band diagram, the results showed that when the current was 100 mA, the In-composition gradient decrease quantum barrier (QB) structure could effectively suppress electron leakage while improving hole injection efficiency, resulting in an increase in carrier concentration in the active region and an improvement in the effective recombination rate in the quantum well (QW). As a result, the IQE and output power of the LED were effectively improved.

    Reference
    [1] KNEISSL M, SEONG T Y, HAN J, et al. The emergence and prospects of deep-ultraviolet light-emitting diode technologies Han[J]. Nature photonics, 2019, 13(4):233-244.
    [2] HINDS L M, O’DONNEL C P, AKHTE M, et al. Principles and mechanisms of ultraviolet light emitting diode technology for food industry applications[J]. Innovative food science & emerging technologies, 2019, 56:102153.
    [3] MURAMOTO Y, KIMUR M, NOUDA S. Development and future of ultraviolet light-emitting diodes:UV-LED will replace the UV lamp[J]. Semiconductor science and technology, 2014, 29(8):084004.
    [4] SONG K, MPHSENI M, TAGHIPOU F. Application of ultraviolet light-emitting diodes (UV-LEDs) for water disinfection:a review[J]. Water research, 2016, 94:341-349.
    [5] YU H B, REN Z J, MEMON M H, et al. Cascaded deep ultraviolet light-emitting diode via tunnel junction[J]. Chinese optics letters, 2021, 19(8):082503.
    [6] NAKAMURA S. Future technologies and applications of III-nitride materials and devices[J]. Engineering, 2015, 1(2):161.
    [7] ZHENG H, SUN H, YANG M, et al. Effect of polarization field and nonradiative recombination lifetime on the performance improvement of step stage InGaN/GaN multiple quantum well LEDs[J]. Journal of display technology, 2015, 11(9):776-782.
    [8] KUO Y K, CHANG J Y, TSAI M C, et al. Enhancement in hole-injection efficiency of blue InGaN light-emitting diodes from reduced polarization by some specific designs for the electron blocking layer[J]. Optics letters, 2010, 35(19):3285-3287.
    [9] XU J R, SCHUBERT M F, NOENAUN A N, et al. Reduction in efficiency droop, forward voltage, ideality factor, and wavelength shift in polarization-matched GaInN/GaInN multi-quantum-well light-emitting diodes[J]. Applied physics letters, 2009, 94(1):011113.
    [10] YEN S H, TSAI M C, TSAI M L, et al. Effect of n-type Algan layer on carrier transportation and efficiency drop of blue InGaN light-emitting diodes[J]. IEEE photonics technology letters, 2009, 21(14):975-977.
    [11] KUO Y K, CHANG J Y, TSAI M C, et al. Advantages of blue InGaN multiple-quantum well light-emitting diodes with InGaN barriers[J]. Applied physics letters, 2009, 95:1011116.
    [12] KUO Y K, WANG T H, CHANG J Y, et al. Advantages of InGaN light-emitting diodes with GaN-InGaN-GaN barriers[J]. Applied physics letters, 2011, 99(9):091107.
    [13] XIONG J Y, XU Y Q, DING B B, et al. Investigation of blue InGaN light-emitting diodes with p-AlGaN/InGaN superlattice interlayer[J]. Applied physics A-materials science and processing, 2014, 114(8):309-313.
    [14] KARAN H, BISWAS A. Improving performance of light-emitting diodes using InGaN/GaN MQWs with varying trapezoidal bottom well width[J]. Optik, 2021, 247:167888.
    [15] HENGSTETER J, PRAJOON P, NIRMAL D. Analysis of high efficiency InGaN multiple quantum-well light-emitting-diodes using InGaN step-graded barriers[J]. Journal of nanoelectronics and optoelectronics, 2018, 13(6):939-943.
    [16] JIA C Y, YU T J, FENG X H, et al. Performance improvement of GaN-based near-UV LEDs with InGaN/AlGaN superlattices strain relief layer and AlGaN barrier[J]. Superlattices and microstructures, 2016, 97:417-423.
    [17] WOLNY P, TURSKI H, MUZIOL G, et al. Impact of interfaces on photoluminescence efficiency of high-indium-content (In, Ga)N quantum wells[J]. Physical review applied, 2023, 19(1):014044.
    [18] SHARIF M N, WALI Q, REHMAN H U, et al. Sensitivity of indium molar fraction in InGaN quantum wells for near-UV light-emitting diodes[J]. Micro and nanostructures, 2022, 165:207208.
    [19] JIANG Y R, CHENG L W, LIN X Y, et al. Composition-graded quantum barriers improve performance in InGaN-based laser diodes[J]. Semiconductor science and technology, 2021, 36(11):115001.
    [20] FANG G T, ZHANG M, XIONG D Y. On the near-pole hole insertion layer and the far-pole hole insertion layer for multi-quantum-well deep ultraviolet light-emitting diodes[J]. Nanomaterials, 2022, 12(4):629.
    [21] MAEDA N, JO M, HIRAYAMA H. Improving the light-extraction efficiency of AlGaN DUV-LEDs by using a superlattice hole spreading layer and an Al reflector[J]. Physica status solidi A-applications and materials science, 2018, 215:1700436.
    [22] SHARIF M N, USMAN M, NIASS M I, et al. Compositionally graded AlGaN hole source layer for deep-ultraviolet nanowire light-emitting diode without electron blocking layer[J]. Nanotechnology, 2021, 33(7):075205.
    [23] NIASS M I, SHARIF M N, WANG Y F, et al. Enhance ment of the optoelectronic characteristics of deep ultraviolet nanowire laser diodes by induction of bulk polarization charge with graded AlN composition in AlxGa1-xN waveguide[J]. Superlattices and microstructures, 2020, 145:106643.
    [24] TURIN V O. A modified transferred-electron high-field mobility model for GaN devices simulation[J]. Solid state electronics, 2005, 49(10):1678-1682.
    [25] LIU J P, RYOU J H, DUPUIS R D, et al. Barrier effect on hole transport and carrier distribution in InGaN/GaN multiple quantum well visible light-emitting diodes[J]. Applied physics letters, 2008, 93(2):021102.
    [26] BERCHA A, TRZECIAKOWSK W, MUZIO G, et al. Evidence for "dark charge" from photoluminescence measurements in wide InGaN quantum wells[J]. Optics express, 2023, 31(2):3227-3236.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

SANG Xien, XU Yuan, YIN Mengshuang, WANG Fang, LIOU Juin J, LIU Yuhuai. InGaN multiple quantum well based light-emitting diodes with indium composition gradient InGaN quantum barriers[J]. Optoelectronics Letters,2024,20(2):89-93

Copy
Share
Article Metrics
  • Abstract:287
  • PDF: 622
  • HTML: 0
  • Cited by: 0
History
  • Received:June 06,2023
  • Revised:August 16,2023
  • Online: January 05,2024
Article QR Code