Abstract:This study delves into the feasibility of using amorphous silicon photocells as photosensitive units for retinal pros-theses. Firstly, theoretical simulations coupled with experimental results demonstrated its strong light absorption and quantum efficiency within the 300-800 nm range. Subsequently, measurements on its visual sensitivity properties were conducted. The findings revealed that, under photopic vision conditions, the photocells could provide the stim-ulating current required for the human retinal nerve cells. Finally, the visual spectral sensitivity curve of the amor-phous silicon photocells was assessed, and the results indicated that the spectral sensitivity curve of the amorphous silicon photocells closely mirrors the visual function curve of the human eye under photopic conditions, demonstrat-ing a response to light across various wavelengths.