Compact yellow-orange Nd:YVO4/PPMgLN laser at 589 nm
CSTR:
Author:
Affiliation:

1. College of Chemistry and Material, Fujian Normal University, Fuzhou 350008, China;2. Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China;3. Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108,

  • Article
  • | |
  • Metrics
  • |
  • Reference [20]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    We propose and make a compact yellow-orange laser of the Nd-doped yttrium vanadate (Nd:YVO4)/periodically poled Mg-doped lithium niobate (PPMgLN) module by Raman frequency-doubling at 589 nm. By reasonably designing the size of the Nd:YVO4 and 5 mol% PPMgLN crystals, cavity length and coating parameter, a compact 589 nm laser module with a total size of 3 mm×10 mm×1.5 mm is fabricated. In the laser module, the input surface of Nd:YVO4 crystal is end-pumped by an 808 nm laser diode (LD). Under the effect of linear resonant cavity structure, the output surface of PPMgLN crystal with a period of 9.48 μm generates 589 nm yellow-orange light. The experimental results show that the maximum output power at 589 nm is 390 mW at the pump power of 3 W with the optical-optical conversion efficiency of 13% and the stability of the output power is less than 2% within 3 h.

    Reference
    [1] MüLLER A, MARSCHALL S, JENSEN O B, et al. Diode laser based light sources for biomedical applications[J]. Laser & photonics reviews, 2013, 7(5):605-627.
    [2] DENBAARS S P, FEEZELL D, KELCHNER K, et al. Development of gallium-nitride-based light-emitting diodes (LEDs) and laser diodes for energy-efficient lighting and displays[J]. Acta materialia, 2013, 61(3):945-951.
    [3] ISLEK M, NILUFER-ERDIL D, KNUTHSEN P. Changes in flavonoids of sliced and fried yellow onions (A llium cepa L. var. zittauer) during storage at different atmospheric, temperature and light conditions[J]. Journal of food processing and preservation, 2015, 39(4):357-368.
    [4] NEVSKY A Y, BRESSEL U, ERNSTING I, et al. A narrow-line-width external cavity quantum dot laser for high-resolution spectroscopy in the near-infrared and yellow spectral ranges[J]. Applied physics B, 2008, 92:501-507.
    [5] MAX C E, OLIVIER S S, FRIEDMAN H W, et al. Image improvement from a sodium-layer laser guide star adaptive optics system[J]. Science, 1997, 277(5332):1649-1652.
    [6] HUO X, QI Y, ZHANG Y, et al. Research development of 589 nm laser for sodium laser guide stars[J]. Optics and lasers in engineering, 2020, 134:106207.
    [7] FENG Y, HUANG S, SHIRAKAWA A, et al. 589 nm light source based on Raman fiber laser[J]. Japanese journal of applied physics, 2004, 43(6A):L722.
    [8] YUE J, SHE C Y, WILLIAMS B P, et al. Continuous-wave sodium D2 resonance radiation generated in single-pass sum-frequency generation with periodically poled lithium niobate[J]. Optics letters, 2009, 34(7):1093-1095.
    [9] YUAN Y, LI B, GUO X. Laser diode pumped Nd:YAG crystals frequency summing 589 nm yellow laser[J]. Optik, 2016, 127(2):710-712.
    [10] CHEN M, DAI S, YIN H, et al. Passively Q-switched yellow laser at 589 nm by intracavity frequency-doubled c-cut composite Nd:YVO4 self-Raman laser[J]. Optics & laser technology, 2021, 133:106534.
    [11] LI Y, HUANG X, MAO W, et al. Compact 589 nm yellow source generated by frequency‐doubling of passively Q‐switched Nd:YVO4 Raman laser[J]. Microwave and optical technology letters, 2022.
    [12] ARMSTRONG J A, BLOEMBERGEN N, DUCUING J, et al. Interactions between light waves in a nonlinear dielectric[J]. Physical review, 1962, 127(6):1918.
    [13] HOUE M, TOWNSEND P D. An introduction to methods of periodic poling for second-harmonic generation[J]. Journal of physics D:applied physics, 1995, 28(9):1747.
    [14] LIU W J. Study on nonlinear optical effects of optical superlattices and preparation of materials[D]. Jinan:Shandong Normal University, 2003. (in Chinese)
    [15] WANG C L. Research on nonlinear optical effects and structural design of optical superlattices[D]. Jinan:Shandong Normal University, 2005. (in Chinese)
    [16] GAYER O, SACKS Z, GALUN E, et al. Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3[J]. Applied physics B, 2008, 91:343-348.
    [17] DUAN Y, LI Y, XU C, et al. Generation of 589 nm emission via frequency doubling of a composite c-cut Nd:YVO4 self-Raman laser[J]. IEEE photonics technology letters, 2022, 34(15):831-834.
    [18] MILLER G D. Periodically poled lithium niobate:modeling, fabrication, and nonlinear optical performance[M]. Stanford University, 1998.
    [19] MIZUUCHI K, MORIKAWA A, SUGITA T, et al. Electric-field poling in Mg-doped LiNbO3[J]. Journal of applied physics, 2004, 96(11):6585-6590.
    [20] BUZáDY A, GáLOS R, MAKKAI G, et al. Temperature-dependent terahertz time-domain spectroscopy study of Mg-doped stoichiometric lithium niobate[J]. Optical materials express, 2020, 10(4):998-1006.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

MA Lei, FENG Xinkai, CHEN Huaixi, CHENGXing, CHEN Jiaying, LIANG Wanguo. Compact yellow-orange Nd:YVO4/PPMgLN laser at 589 nm[J]. Optoelectronics Letters,2023,19(11):641-645

Copy
Share
Article Metrics
  • Abstract:435
  • PDF: 590
  • HTML: 0
  • Cited by: 0
History
  • Received:March 10,2023
  • Revised:April 27,2023
  • Online: November 17,2023
Article QR Code