Research on wind turbine blade damage based on pre-stressed FBG strain sensors
DOI:
Author:
Affiliation:

Faculty of Land Resources Engineering, Kunming University of Science & Technology

Clc Number:

Fund Project:

The National Basic Research Program of China (973 Program)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Wind turbine blades are one of the core components that capture wind energy in a wind power generator. As the service time of wind turbines increases, the safety of the blades gradually de-creases. Therefore, a chip-type pre-stressed FBG strain sensor was designed for real-time moni-toring. Combined with simulation analysis, the structure of the sensor was optimized. Through calibration experiments, it was found that the pre-stressing process increased the measurement range of the sensor, ensured a consistent overall linearity, and avoided the possible hysteresis phenomenon during compression. The final sensitivity of the sensor was determined to be 1.970pm/με, with a linear fitting coefficient of 0.999. Finally, the sensor was used to monitor the wind turbine blades and it was found that the strain change curve of the root of a normally functioning blade is a sine curve, which provides a certain reference value for judging whether the blade is damaged in the future.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 21,2023
  • Revised:July 14,2023
  • Adopted:August 03,2023
  • Online:
  • Published: