Abstract:A theoretical model concerning active Q-switching of an Fe:ZnSe laser pumped by a continuous-wave (CW) 2.8 μm fiber laser is developed. Calculations are compared with the recently reported experiment results, and good agreement is achieved. Effects of pump power, output reflectivity, ion concentration and temperature of crystal on the laser output performance are investigated and analyzed. Numerical results demonstrate that, similar to highly efficient CW Fe:ZnSe laser, low temperature of the crystal is significant to obtain high peak power Q-switched pulses. The numerical simulation results are useful for optimizing the design of actively Q-switched Fe:ZnSe laser.