Electrowetting-driven droplet shrinkage with tunable focus property
CSTR:
Author:
Affiliation:

Center of Optofluidic Technology, College of Optoelectronic Engineering, Nanjing University of Posts and Telecommunication, Nanjing 210023, China

  • Article
  • | |
  • Metrics
  • |
  • Reference [27]
  • |
  • Related
  • | | |
  • Comments
    Abstract:

    In this paper, a non-conductive droplet driven by electrowetting (EW) with planar electrode in surrounding fluid is studied. COMSOL is employed to simulate the evolution of droplet shrinkage and the relative experimental setup is established to monitor the evolution of contact angle and height at different voltages. The droplet contracts inward and the corresponding contact angle/height increase when voltage increases. When the voltage ranges from 50 V to 140 V, the variation of the relative contact angles and height reach up to 118.78° and 3.194 mm, respectively. The system of silicon oil and surrounding liquid propylene glycol (PG) acts as a positive lens, whose focal length varies from 87.153 mm to 42.963 mm.

    Reference
    [1] ZHONG Q F, DING H B, GAO B B, et al. Advances of microfluidics in biomedical engineering[J]. Advanced
    materials technologies, 2019, 4(6):1800663.
    [2] WEISGRAB G, OVSIANIKOV A, COSTA P F. Functional 3D printing for microfluidic chips[J]. Advanced material technologies, 2019, 4(10):1900275.
    [3] CHOU W L, PEE Y L, YANG C L, et al. Recent advances in applications of droplet microfluidics[J]. Micromachines, 2015, 6(9):1249-1271.
    [4] CONNER C, VISSER T, LOESSBERG J, et al. Energy harvesting with a liquid-metal microfluidic influence machine[J]. Physical review applied, 2018, 9(4):044008.
    [5] DARHUBER A, VALENTINO J, TROIAN S. Planar digital nanoliter dispensing system based on thermocapillary actuation[J]. Lab on a chip, 2010, 10(8):1061-1071.
    [6] HERON S, WILSON R, SHAFFER S, et al. Surface acoustic wave nebulization of peptides as a microfluidic interface for mass spectrometry[J]. Analytical chemistry, 2010, 82(10):3985-3989.
    [7] CHEN R, JIAO L, ZHU X, et al. Cassie-to-Wenzel transition of droplet on the superhydrophobic surface caused by light induced evaporation[J]. Applied thermal engineering, 2018, 144:945-959.
    [8] HU H, HUANG S, CHEN L. Displacement of liquid droplets on micro-grooved surfaces with air flow[J]. Experimental thermal & fluid science, 2013, 49:86-93.
    [9] WASHIZU M. Electrostatic actuation of liquid droplets for micro-reactor applications[J]. IEEE transactions on industry applications, 1998, 34(4):732-737.
    [10] TIMONEN J, LATIKKA M, LEIBLER L, et al. Switchable static and dynamic self-assembly of magnetic droplets on superhydrophobic surfaces[J]. Science, 2013, 341(6143):253-257.
    [11] ZHAO R, LIANG Z C. Mechanism of contact angle saturation and an energy-based model for electrowetting[J]. Chinese physics B, 2016, 25(6):364-369.
    [12] MUGELE F, BARET J C. Topical review:electrowetting:from basics to applications[J]. Journal of physics condensed matter, 2005, 17(28):705-774.
    [13] VANCAUWENBERGHE V, MARCO P D, BRUTIN D. Wetting and evaporation of a sessile drop under an
    external electrical field:a review[J]. Colloids & surfaces a physicochemical & engineering aspects, 2013, 432(17):50-56.
    [14] GRINSVEN K V, ASHTIANI A O, JIANG H. Fabrication and actuation of an electrowetting droplet array on a flexible substrate[J]. Micromachines, 2017, 8(11):334.
    [15] NELSON W C, KIM C J C, CHANG J. Droplet actuation by electrowetting-on-dielectric (EWOD):a review[J]. Journal adhesion science & technology, 2012, 26(12-17):1747-1771.
    [16] LIPPMANN G. Relations entre les phenomenes electriques et capillaires[J]. Annales chimie physique, 1875, 5(11):494.
    [17] KUIPER S. Variable-focus liquid lens for miniature cameras[J]. Applied physics letters, 2004, 85(7):1128-1130.
    [18] LIU C X, PARK J, CHOI J W. A planar lens based on the electrowetting of two immiscible liquids[J]. Journal of micromechanics & microengineering, 2008, 18(3):035023.
    [19] MALK R, FOUILLET Y, DAVOUST L. Rotating flow within a droplet actuated with AC EWOD[J]. Sensors & actuators B chemical, 2011, 154(2):191-198.
    [20] LEI L, CHAO L, REN H, et al. Annular folded electrowetting liquid lens[J]. Optics letters, 2015, 40(9):1968-1971.
    [21] LEE J, PARK Y, CHUNG S K. Multifunctional liquid lens for variable focus and aperture[J]. Sensors & actuators A physical, 2019, 287:77-184.
    [22] WENG N, WANG Q, GU J, et al. The dynamics of droplet detachment in reversed electrowetting (REW)[J]. Colloids and surfaces a physicochemical and engineering aspects, 2021, 616(4):126303.
    [23] ZHANG W J, ZHAO R, HE Y J, et al. Electrowetting-actuated optofluidic phase modulator[J]. Optics express, 2021, 29(2):797-804.
    [24] LIN Y Y, EVANS R D, WELCH E, et al. Low voltage electrowetting-on-dielectric platform using multilayer insulators[J]. Sensors & actuators B chemical, 2010, 150(1):465-470.
    [25] CHEN T. Research on microfluidic optical information device and its application[D]. Nanjing:Nanjing University of Posts and Telecommunications, 2015:54-56. (in Chinese)
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

LIANG Dan, ZHAO Rui, LIANG Zhongcheng, KONG Meimei, CHEN Tao. Electrowetting-driven droplet shrinkage with tunable focus property[J]. Optoelectronics Letters,2022,18(3):166-169

Copy
Share
Article Metrics
  • Abstract:494
  • PDF: 317
  • HTML: 0
  • Cited by: 0
History
  • Received:July 09,2021
  • Revised:August 16,2021
  • Online: April 27,2022
Article QR Code