A 2D quadrangular pyramid photoelectric autocollimator with extended angle measurement range
CSTR:
Author:
Affiliation:

1. Faculty of Applied Optic, ITMO University, 49 Kronverkskiy Prospect, Saint Petersburg 197101, Russia;2. Chongqing Engineering Research Center of Intelligent Sensing Technology and Microsystem, Chongqing University of Post and Telecommunications, Chongqing 400065, China;3. School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

  • Article
  • | |
  • Metrics
  • |
  • Reference [22]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    A photoelectric autocollimator with high accuracy and extended measurement range based on the quadrangular pyramid is proposed, and the corresponding algorithms are also deduced. A new image processing algorithm has been proposed to improve the accuracy, and the corresponding errors are also estimated, the error does not exceed half a pixel when the distance between the marks more than two radii. The experimental results have verified that the measurement range of the proposed two-dimensional (2D) quadrangular pyramid photoelectric autocollimator can be increased times than that of the flat mirror photoelectric autocollimator from 10′ to 15′. The accuracy is better than 1″ when the deflection is less than 15′.

    Reference
    [1] T. Turgalieva and I. Konyakhin, Research of Autocollimating Angular Deformation Measurement System for Large-Size Objects Control, Proceedings of SPIE-The International Society for Optical Engineering 8788, 878832 (2014).
    [2] I. Konyakhin, T. V. Kopylova and A. I. Konyakhin, Optic-Electronic Autocollimation Sensor for Measurement of the Three-Axis Angular Deformation of Industry Objects, Proceedings of SPIE-The International Society for Optical Engineering 8439, 84391N (2012).
    [3] I. Konyakhin, T. V. Kopylova, A. I. Konyakhin and A. A. Smekhov, Proceedings of SPIE-The International Society for Optical Engineering 8759, 87593E (2013).
    [4] P. R. Yoder, E. R. Schlesinger and J. L. Chickvary, Applied optics 14, 1890 (1975).
    [5] M. Gao, Z. R. Dong, Z. L. Bian, Q. Ye, Z. J. Fang and R. H. Qu, Chinese Optics Letters 9, 32 (2011).
    [6] R. D. Geckeler, P. K?en, A. Just, M. Schumann, M. Krause, I. Lacey and V. V. Yashchuk, Review of Scientific Instruments 90, 021705 (2019).
    [7] R. P. Li, I. Konyakhin, Q. Zhang, W. Cui, D. D. Wen, X. H. Zou, J. Q. Guo and Y. Liu, Optical Engineering 58, 104112 (2019).
    [8] K. Ishikawa, T. Takamura, M. Xiao, S. Takahashi and K. Takamasu, Measurement Science & Technology 25, 064008 (2014).
    [9] J. Luo, Z. Wang, Z. Wen, M. Li, S. Liu and C. Shen, Review of Scientific Instruments 89, 015101 (2018).
    [10] W. Gao, H. Ohnuma, H. Satoh, H. Shimizu and S. Kiyono, CIRP Ann.-Manuf. Technol. 53, 425 (2004).
    [11] K. Ishikawa, T. Takamura, M. Xiao, S. Takahashi and K. Takamasu, Measurement Science & Technology 25, 064008 (2014).
    [12] S. J. Thompson, R. Lang, P. Rees and G. W. Roberts, Applied Optics 55, 2827 (2016).
    [13] Y. L Chen., Y. Shimizu, Y. Kudo, S. Ito and W. Gao, Optics Express, 24, 15554 (2016).
    [14] Y. L. Chen, Y. Shimizu, J. Tamada, Y. Kudo, S. Madokoro, K. Nakamura and W. Gao, Optics Express 25, 16725 (2017).
    [15] R. P. Li, M. Zhou, I. Konyakhin, K. Di and Y. Liu, Optics express 27, 6389 (2019).
    [16] I. A. Konyakhin, T. V. Turgalieva and R. P. Li, Proc. SPIE 9141, 914123 (2014).
    [17] Dennis F. Vanderwerf, Applied Prismatic and Reflective Optics, SPIE, Bellingham, Washington, 303 (2010).
    [18] J. Lieblein, G. A. Korn and T. M. Korn, Mathematics of Computation 15, 421 (2000).
    [19] G. V. Pogarev and N. G. Kiselev, Optical Adjustment Problems:A Reference Book, Mashinostroenie, Leningrad,206 (1989).
    [20] D.H. Ballard, Pattern Recognition 13, 111 (1981).
    [21] A. F. Leandro, Pattern Recognition 41, 299 (2008).
    [22] Rafael C. Gonzalez, Richard E. Woods and Steven L. Eddins, Digital Image Processing Using Matlab 21, 197 (2010).
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

Konyakhin, Igor, LI Renpu, ZHOU Min, Dang, Dinh Duan, Nikitin, Mikhail, HUANG Guifu, YANG Jiawen, TAN Xin. A 2D quadrangular pyramid photoelectric autocollimator with extended angle measurement range[J]. Optoelectronics Letters,2021,17(8):468-474

Copy
Share
Article Metrics
  • Abstract:688
  • PDF: 12
  • HTML: 0
  • Cited by: 0
History
  • Received:September 09,2020
  • Revised:January 04,2021
  • Online: July 09,2021
Article QR Code