Investigation of multiple metal nanoparticles near-field coupling on the surface by discrete dipole approximation method
CSTR:
Author:
Affiliation:

1. Zhejiang Provincial Key Laboratory & Collaborative Innovation Center for Quantum Precision Measurement, College of Science, Zhejiang University of Technology, Hangzhou 310023, China;3. College of Zhijiang, Zhejiang University of Technology, Shaoxing 312000, China

  • Article
  • | |
  • Metrics
  • |
  • Reference [30]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    We use the method of discrete dipole approximation with surface interaction to construct a model in which a plurality of nanoparticles is arranged on the surface of BK7 glass. Nanoparticles are in air medium illuminated by evanescent wave generated from total internal reflection. The effects of the wavelength, the polarization of the incident wave, the number of nanoparticles and the spacing of multiple nanoparticles on the field enhancement and extinction efficiency are calculated by our model. Our work could pave the way to improve the field enhancement of multiple nanoparticles systems.

    Reference
    [1]V. L. Y. Loke and M. P. Menguc, Journal of the Optical Society of America a-Optics Image Science and Vision 27, 2293 (2010).
    [2]T. W. H. Oates and A. Mucklich, Nanotechnology 16, 2606 (2005).
    [3]K. A. Willets and R. P. Van Duyne, Annual Review of Physical Chemistry 58, 267 (2007).
    [4]S. S. Acimovic, M. P. Kreuzer, M. U. Gonzalez and R. Quidant, Acs Nano 3, 1231 (2009).
    [5]A. Bansal and S. S. Verma, Aip Advances 4, 14 (2014).
    [6]V. Amendola, R. Pilot, M. Frasconi, O. M. Marago and M. A. Iati, Journal of Physics-Condensed Matter 29, 48 (2017).
    [7]J. H. Yoon, F. Selbach, L. Langolf and S. Schlucker, Small 14, 5 (2018).
    [8]H.-y. Zhang, S.-g. Yu and M.-j. Bian, Optoelectronics Letters 14, 241 (2018).
    [9]I. D. Mayergoyz, Physica B-Condensed Matter 407, 1307 (2012).
    [10]J. F. L. Santos, M. J. L. Santos, A. Thesing, F. Tavares, J. Griep and M. R. F. Rodrigues, Quimica Nova 39, 1098 (2016).
    [11]V. Amendola, Physical Chemistry Chemical Physics 18, 2230 (2016).
    [12]J.-j. Wang and Z.-h. Jia, Optoelectronics Letters 15, 439 (2019).
    [13]T. Karakouz, A. B. Tesler, T. A. Bendikov, A. Vaskevich and I. Rubinstein, Advanced Materials 20, 3893 (2008).
    [14]K. A. Willets, A. J. Wilson, V. Sundaresan and P. B. Joshi, Chemical Reviews 117, 7538 (2017).
    [15]J. A. Scholl, A. Garcia-Etxarri, A. L. Koh and J. A. Dionne, Nano Letters 13, 564 (2013).
    [16]S. Kadkhodazadeh, J. R. de Lasson, M. Beleggia, H. Kneipp, J. B. Wagner and K. Kneipp, Journal of Physical Chemistry C 118, 5478 (2014).
    [17]S. Lerch and B. M. Reinhard, Nature Communications 9, 1608 (2018).
    [18]K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith and S. Schultz, Nano Letters 3, 1087 (2003).
    [19]E. R. Encina and E. A. Coronado, Journal of Physical Chemistry C 114, 3918 (2010).
    [20]Y. Ruan, K. Li, Q. Lin and T. Zhang, Chinese Physics Letters 35,4(2018).
    [21]B. T. Draine and P. J. Flatau, Journal of the Optical Society of America a-Optics Image Science and Vision 11, 1491 (1994).
    [22]M. A. Yurkin and A. G. Hoekstra, Journal of Quantitative Spectroscopy & Radiative Transfer 106, 558 (2007).
    [23]M. A. Yurkin and A. G. Hoekstra, Journal of Quantitative Spectroscopy & Radiative Transfer 112, 2234 (2011).
    [24]O. A. Yeshchenko and A. O. Pinchuk, Reviews in Plasmonics 2017,C. D. Geddes, ed., Springer International Publishing, Cham, 285 (2019).
    [25]B. T. Draine and J. Goodman, Astrophysical Journal 405, 685 (1993).
    [26]D. W. Mackowski, Journal of the Optical Society of America a-Optics Image Science and Vision 19, 881 (2002).
    [27]A. B. Evlyukhin, C. Reinhardt and B. N. Chichkov, Physical Review B 84, 8 (2011).
    [28]B. J. Frey, D. B. Leviton, T. J. Madison, Q. Gong and M. Tecza, Cryogenic Optical Systems and Instruments Xii,J. B. Heaney and L. G. Burriesci, ed., Spie-Int Soc. Optical Engineering, Bellingham, 2007.
    [29]W. Y. Rao, Q. Li, Y. Z. Wang, T. Li and L. J. Wu, Acs Nano 9, 2783 (2015).
    [30]C. Jing, Z. Gu, Y. L. Ying, D. W. Li, L. Zhang and Y. T. Long, Analytical Chemistry 84, 4284 (2012).
    Cited by
Get Citation

YIN Ping, LIN Qiang, RUAN Yi, CHEN Jing-jing. Investigation of multiple metal nanoparticles near-field coupling on the surface by discrete dipole approximation method[J]. Optoelectronics Letters,2021,17(5):257-261

Copy
Share
Article Metrics
  • Abstract:1084
  • PDF: 2
  • HTML: 0
  • Cited by: 0
History
  • Received:April 11,2020
  • Revised:June 16,2020
  • Online: May 25,2021
Article QR Code