Abstract:Laser communication is essential part of maritime-terrestrial-air intelligent communication/sensor network. Among them, different modulation formats would play a unique role in specific applications. Based on Rytov theory, we discussed system performance of the maritime laser communication with repeated coding technology in several modulation schemes. The closed-form expression of average bit error rate (BER) from weak to moderate atmospheric turbulence described by log-normal distribution is given. Differential phase shift keying (DPSK) modulation, as a potential solution for future maritime laser communication, has attracted a lot of attention. We analyzed the effects of atmospheric turbulence parameters (visibility, refractive index structure coefficient, non-Kolmogorov spectral power-law exponent, turbulence inner scale) and DPSK system parameters (receiver aperture diameter, repeat time) on average BER in detail. Compared with the aperture-averaging effects, the system BER can be well suppressed through increasing repeat time. This work is anticipated to provide a theoretical reference for maritime laser communication systems.