Impact of the dielectric duty factor on magnetic resonance in Ag-SiO2-Ag magnetic absorber
CSTR:
Author:
Affiliation:

1. Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, School of Physics and Physical Engineering, Qufu Normal University, Qufu273100, China;2. Surface Physics State Laboratory and Department of Physics, Fudan University, Shanghai200433, China

  • Article
  • | |
  • Metrics
  • |
  • Reference [43]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Magnetic absorber in optical frequency can be fulfilled through metamaterials designing. Therein, magnetic resonance in metal-dielectric-metal metasurfaces can be manipulated conveniently, and studying the parameters impacts is the primary for applications. In this work, through changing the grating width and the thickness of silica, the magnetic resonance modes have been studied, the conditions of the phase change zone from magnetic resonance (MR) to Fabry-Pérot (FP) are given out in Ag-SiO2-Ag grating magnetic metasurfaces. The results indicate that the MR mode in metal-dielectric-metal configuration is mainly decided on the dielectric duty factor other than the sole behaviors of the thickness of dielectric and size of nanostructures. The physical mechanism is elucidated through simulated electromagnetic field distributions using finite difference time domain (FDTD) solution, and numerical analysis of effective refraction index of Ag-SiO2-Ag magnetic metasurfaces. This study may prompt development of metamaterials in basic research in condensed physics and in optical devices applications. This work has been supported by the Natural Science Foundation of Shandong Province (No.2015ZRB019MD), the National Science Fund for Young Scholars (No.11704219), the Doctoral Research Started Funding of Qufu Normal University (No.BSQD20130152), the Open Subject of Key Laboratory of Magnetism and Magnetic Materials, Ministry of Education, Lanzhou University (No.LZUMMM2019013). E-mail:xzhangqf@mail.qfnu.edu.cn

    Reference
    [1] Lagatsky A A, Kisel V E, Bain F, Brown C T A, Kuleshov N V and Sibbett W, Advances in Femtosecond Lasers Having Enhanced Efficiencies, International Conference on Lasers, Applications, and Technologies:Advanced Lasers and Systems, 67310E (2007).
    [2] Bellaidi A, Ernst K and K?nenkamp R, MRS Proceedings 822, S7.5 (2004).
    [3] Wu D, Liu Y, Li R, Chen L, Ma R, Liu C and Ye H, Nanoscale Research Letters 11, 483 (2016).
    [4] Hao J, Wang J, Liu X, Padille W J, Zhou L and Qiu M, Applied Physics Letters 96, 4184 (2010).
    [5] Wang Y, Sun T, Paudel T, Zhang Y, Ren Z and Kempa K, Nano Letters 12, 440 (2012).
    [6] Chen X Wu, J H, Liu C and Cao P, Journal of the Optical Society of America B 36, 153 (2019).
    [7] Zhang X, Optical Metamaterials, London:Springer-Verlag GmbH, 207 (2010).
    [8] Longhi S, Physical Review A 82, 031801 (2010).
    [9] Zhang X, Fan Y, Qi L and Li H, Optical Materials Express 6, 2448 (2016).
    [10] Caligiuri V, Palei M, Imran M, Mana L and Krahne R, ACS Photonics 5, 2287 (2018).
    [11] Viktor G Veselago, Soviet Physics Uspekhi 10, 509 (1968).
    [12] Pendry J B, Holden A J, Robbins D J and Stewart W J, IEEE Transactions on Microwave Theory and Techniques 47, 2075 (1999).
    [13] Monticone F and Alu A, Journal of Materials Chemistry C 2, 9059 (2014).
    [14] H W Kihm, S M Koo, Q H Kim, K Bao, J E Kihm, W S Bak, S H Eah1, C Lienau, H Kim, P Nordlander, N J Halas, N K Park and D S Kim, Nature Communications 2, 451 (2011).
    [15] Lahiri B, McMeekin Scott G, Khokhar Ali Z, De La Rue Richard M and Johnson Nigel P, Optics Express 18, 3210 (2010).
    [16] Hentschel M, Saliba M, Vogelgesang R, Giessen H, Alivisatos A P and Liu N, Nano Letters 10, 2721 (2010).
    [17] Fu Y H, Kuznetsov A I, Miroshnichenko A E, Yu Y F and Luk’yanchuk B, Nature Communications 4, 1527 (2013).
    [18] Liu W, Andrey E M and Yuri K, Chinese Physics B 23, 047806 (2014).
    [19] Pawe? Wo?niak, Israel De Leon, Katja H?flich, Caspar Haverkamp, Silke Christiansen, Gerd Leuchs, and Peter Banzer, Optics Express 26, 19275 (2018).
    [20] Jahani S and Jacob Z, Nature Nanotechnology 11, 23 (2016).
    [21] Lu D Y, Liu H, Li T, Wang S M, Wang F M, Zhu S N and Zhang X, Physical Review B 77, 214302 (2008).
    [22] Wu C, Arju N, Kelp G, Fan J A, Dominguez J, Gonzales E, Tutuc E, Brener I and Shvets G, Nature Communications 5, 3892 (2014).
    [23] Yang Y, Kravchenko I I, Briggs D P and Jason Valentine, Nature Communications 5, 5753 (2014).
    [24] Parinda Vasa, Wei Wang, Robert Pomraenke, Melanie Lammers, Margherita Maiuri, Christian Manzoni, Giulio Cerullo, and Christoph Lienau, Nature Photonics 7, 128 (2013).
    [25] Alaeian H and Dionne J A, Physical Review B 91, 245108 (2015).
    [26] Bo Zhen, Chia Wei Hsu, Yuichi Igarashi, Ling Lu, Ido Kaminer, Adi Pick, Song-Liang Chua, John D. Joannopoulos and Marin Solja?i?, Nature 525, 354 (2015).
    [27] Chen H, Luo Y, Liang C, Li Z, Liu S and Lin A, Journal of Optics 20, 035102 (2018).
    [28] Tsurimaki Y, Tong J K, Boriskin V N, Semenov A, Ayzatsky M I, Мachekhin Yuri P, Chen G and Boriskina S V, ACS Photonics 5, 929 (2018).
    [29] Hao J, Jing W, Liu X, Willie J Padilla Zhou L and Qiu M, Applied Physics Letters 96, 4184 (2010).
    [30] Liu N, Mesch M, Weiss T, Mario H and Harald G, Nano Letters 10, 2342 (2010).
    [31] Liu H, Li G X, Li K F, Chen S M, Zhu S N, Chan C T and Cheah K W, Physical Review B Condensed Matter 84, 2461 (2012).
    [32] Liu H, Jack N, Wang S B, Lin Z F, Hang Z H, Chan C T and Zhu S N, Physical Review Letters 106, 087401 (2011).
    [33] Bao Yanjun, Zhu Xing and Fang Zheyu, Scientific Reports 5, 11793 (2015).
    [34] Tserkezis C, Papanikolaou N, Gantzounis G and Nikolaos Stefanou, Physical Review B 78, 165114 (2008).
    [35] R Nicolas, G Lévêque, J Marae-Djouda, G Montay, Y Madi, J Plain, Z Herro, M Kazan, P Adam and T Maurer, Scientific Reports 5, 14419 (2015).
    [36] Zhang X, Liu H, Zhang Z G and Wang Q, Scientific Reports 7, 41858 (2017).
    [37] Yiting C, Jin D and Min Y, Optics Express 22, 30807 (2014).
    [38] Chen H T, Optics Express 20, 7165 (2012).
    [39] Ma S, Xiao S and Zhou L, Physical Review B 93, 045305 (2016).
    [40] H. Liu, Y M L, T Li, S M Wang, S N Zhu and X Zhang. Magnetic Plasmon Modes Introduced by the Coupling Effect in Metamaterials, 247 (2010).
    [41] Shi L, Hakala T K, Rekola H T, Martikainen J P, Moerland R J and T?rm? P, Physical Review Letters 112, 153002 (2014).
    [42] Lee B J, Wang L P and Zhang Z M, Optics Express 16, 11328 (2008).
    [43] Collin S, Pardo F and Pelouard J L, Optics Express 15, 4310 (2007).
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

WANG Yu-ying, LI Jing, SU Fu-fang, SUN Xue-bo, ZHANG Xu, LI Yan, ZHANG Xia. Impact of the dielectric duty factor on magnetic resonance in Ag-SiO2-Ag magnetic absorber[J]. Optoelectronics Letters,2021,17(1):5-11

Copy
Share
Article Metrics
  • Abstract:818
  • PDF: 25
  • HTML: 0
  • Cited by: 0
History
  • Received:November 24,2019
  • Revised:February 17,2020
  • Online: January 04,2021
Article QR Code