Holographic grating fabrication for wide angular bandwidth using polymer thin films
CSTR:
Author:
Affiliation:

1. Institute of Modern Optics, Nankai University, Tianjin 300071, China;2. Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin 300350, China;3. Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China

  • Article
  • | |
  • Metrics
  • |
  • Reference [18]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    To increase the angular bandwidth of volume holographic grating, we fabricate holographic gratings based on grating multiplexing technique by using thin films of photopolymers and polymer dispersed liquid crystals. Experimental results confirm that the liquid crystal materials increase the refractive index modulation of the grating, enabling high diffraction efficiency with wide angular response compared to pure polymer materials. We observe that the fabricated holographic grating has near 80% of diffraction efficiency and about 18° of angular bandwidth, which can be further improved by modifying the liquid crystal/polymer mixtures and the grating multiplexing technique. The grating can be used to fabricate holographic waveguide structures for emerging applications in the near-eye display systems. This work has been supported by the National Natural Science Foundation of China (Nos.61575097, 21473093 and 11704201), and the Natural Science Foundation of Tianjin City (No.17JCQNJC01600). E-mail:drliuhl@nankai.edu.cn

    Reference
    [1] J. Arthur, E. Bailey and P. Williams, Optical Engineering 56, 051405 (2017).
    [2] T. Mikulchyk and J. Walshe, Sensors and Actuators B 239, 776 (2017).
    [3] H. S. Chen, Y. J. Wang, P. J. Chen and Y. H. Lin, Optical Express 23, 28154 (2015).
    [4] K. Aksit and W. Lopes, ACM Transactions on Graphics 36, 1 (2017).
    [5] D. David and C. Tippets, IEEE Transactions on Visuali-zation and Computer Graphics 23, 1275 (2017).
    [6] Yue Zhang, Precision Engineering 60, 482 (2019).
    [7] D. Cheng, Y. Wang, C. Xu, W. Song and G. Jin, Optical Express 22, 20705 (2014).
    [8] N. Zhang, J. Liu, J. Han, X. Li, F. Yang, X. Wang, B. Hu and Y. Wang, Applied Optics 54, 3645 (2015).
    [9] A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke and H. Fuchs, SID 2018Digest 17, 192 (2018).
    [10] M. Sugawara, M. Suzuki and N. Miyauchi, SID Display Week 42, 164 (2016).
    [11] H. Mukawa, K. Akutsu, I. Matsumura and S. Nakano, SID International Symposium Digest of Technical Papers 39, 89 (2008).
    [12] A. Maimone, A. Georgiou and J. S. Kollin, ACM Transactions on Graphics (Tog) 36, 1 (2017).
    [13] T. Lian, K. J. Mackenzie and D. H. Brainard, US Journal of Vision 19, 23 (2019).
    [14] C. Neipp, J. Francés, F. J. Martínez and R. Fernández, Polymers 9, 395 (2017).
    [15] H. Kogelnik, The Bell System Technical Journal 48, 2909 (1969).
    [16] Jing-Ai Piao, Gang Li, Mei-Lan Piao and Nam Kim, Journal of the Optical Society of Korea 17, 242 (2013).
    [17] F. K. Bruder, T. F?cke, R. Hagen and D. H?nel, Pro-ceedings of SPIE, the International Society for Optical Engineering 9626, 96260T (2015).
    [18] H. Berneth, F. K. Bruder and T. F?cke, Proceedings of SPIE, the International Society for Optical Engineering 9006, 900602 (2014).
    Cited by
Get Citation

WU Peng-fei, WU Zi-jun, ZHUANG Yu, LIU Hong-liang. Holographic grating fabrication for wide angular bandwidth using polymer thin films[J]. Optoelectronics Letters,2021,17(1):1-4

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 24,2019
  • Revised:January 31,2020
  • Online: January 04,2021
Article QR Code