A continuous 1 052 nm and 1 061 nm dual-wavelength Nd:YAG laser
CSTR:
Author:
Affiliation:

Department of Electronics Engineering, Xiamen University, Xiamen 361005, China

  • Article
  • | |
  • Metrics
  • |
  • Reference [18]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Exploiting a specially designed Fabry-Perot filter as output coupler, a continuous 1 052 nm and 1 061 nm dual-wavelength laser is realized. The threshold, slope efficiency and maximum power of the 1 052 nm and 1 061 nm dual-wavelength laser are 2.55 W, 17.5% and 571 mW, respectively. The competition and coexistent relationships between 1 052 nm, 1 061 nm and 1 064 nm are analyzed. Involved non-degenerate Stark energy level structures are used to classify dual-wavelength lasers. According to this method, dual-wavelength lasers can be classified as different upper and lower non-degenerate Stark energy levels, the same upper but different lower Stark energy levels, different upper but the same lower Stark energy levels. Representative Nd:YAG dual-wavelength lasers are classified according to this criterion. It is found that the realization of front two type lasers is easy and that of third type lasers is challenging. This method can be used as a level of difficulty reference for the realization of dual-wavelength lasers.

    Reference
    [1] B M Walsh, Laser Phys. 20, 622 (2010).
    [2] H F Lin, W Z Zhu, F B Xiong and J J Ruan, Appl. Opt. 56, 948 (2017).
    [3] H P Cheng, Y C Liu, T L Huang, H C Liang and Y F Chen, Photon. Res. 6, 815 (2018).
    [4] C Y Li, Y Bo, J L Xu, C Y Tian, Q J Peng, D F Cui and Z Y Xu, Opt. Commun. 284, 4574 (2011).
    [5] M.V. Ponarina, A.G. Okhrimchuk, M.G. Rybin, M.P. Smayev, E.D. Obraztsova, A.V. Smirnov, I.V. Zhluktova, V.A. Kamynin, T.V. Dolmatov, V.V. Bukin and P.A. Obraztsov, Quantum Electronics 49, 365 (2019).
    [6] B Abdul Ghani and M Hammadi, Optik 124, 622 (2013).
    [7] L J Chen, Z P Wang, S D Zhuang, H H Yu, Y G Zhao, L Guo and X G Xu, Opt. Lett. 36, 2554 (2011).
    [8] L Zhang, Z Wei, B Feng, D Li and Z Zhang, Opt. Commun. 264, 51 (2006).
    [9] T L Huang, C L Sung, H P Cheng, C Y Cho, H C Liang, K W Su, K F Huang and Y F Chen, Opt. Express 24, 22189 (2016).
    [10] X Z Wang, Z F Wang, Y K Bu, L J Chen, G X Cai and Z P Cai, IEEE Photonics J. 6, 1501607 (2014).
    [11] Z F Wang, X Z Wang, M C Cai, Y K Bu, L J Chen and G X Cai, Opt. Commun. 330, 143 (2014).
    [12] Z F Wang, X Z Wang, Y K Bu, L J Chen and G X Cai, J. Opt. (India) 44, 195 (2015).
    [13] X Z Wang, Z F Wang, Y K Bu, Z Liu, L J Chen, G X Cai, Z P Cai and J M Dawes, IEEE Photon. Technol. Lett. 26, 1983 (2014).
    [14] X Z Wang, Z F Wang, Y K Bu, L J Chen, G X Cai, Z P Cai and N Chen, Appl. Opt. 55, 879 (2015).
    [15] X Z Wang, H Y Yuan, M S Wang and W C Huang, Opt. Commun. 376, 67 (2016).
    [16] HA Macleod, Thin-Film Optical Filters, 3rd ed., Institute of Physics Publishing, Bristol and Philadelphia, 2001.
    [17] T Y Fan and R L Byer, IEEE J. Quantum Electron. 24, 895 (1988).
    [18] S Singh, R G Smith and L G Van Uitert, Phys. Rev. B 10, 2566 (1974).
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

LIU Li, DAI Cong, WANG Xiao-zhong. A continuous 1 052 nm and 1 061 nm dual-wavelength Nd:YAG laser[J]. Optoelectronics Letters,2020,16(3):181-184

Copy
Share
Article Metrics
  • Abstract:1217
  • PDF: 0
  • HTML: 0
  • Cited by: 0
History
  • Received:August 22,2019
  • Revised:October 05,2019
  • Online: June 02,2020
Article QR Code