Fiber-coupler-based microfluidic system for trapping of DNA biomolecules
CSTR:
Author:
Affiliation:

1. Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, Tianjin Key Laboratory of Engineering Technologies for Cell Phamaceutica, College of Electronic and Information Engineering, Tianjin Polytechnic University, Tianjin 300387, China;2. Key Laboratory of Computer Vision and Systems, Ministry of Education, School of Computer Science and Engineering, Tianjin University of Technology, Tianjin 300384, China;3. Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China

  • Article
  • | |
  • Metrics
  • |
  • Reference [28]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    A miniature fiber-coupler-based microfluidic system is proposed for trapping of DNA biomolecules. The loop-shaped fiber-coupler is fabricated by using flame tapering technique and integrated in a microfluidic channel. Probe-DNA immobilized on the fiber-coupler surface enables specific recognition of target DNA sequences and effectively facilitates the trapping of target DNA molecules. The binding characteristics of biomolecules on the fiber-coupler surface have been theoretically analyzed and experimentally demonstrated. Experimental results indicate that the spectral response of the loop-shaped fiber coupler immobilized with probe DNA exhibits a red-shift with the trapping of the DNA biomolecules. The proposed microfluidic system possesses such desirable merits as simple structure, label-free method and high integration, which make it a promising candidate for applications in molecular biology and related bioengineering areas.

    Reference
    [1] T. Kang, S. M. Yoo, I. Yoon, S. Y. Lee and B. Kim, Nano Lett. 10, 1189 (2010).
    [2] M. S. Fliss, H. Usadel, O. L. Caballero, L. Wu, M. R. Buta, S. M. Eleff, J. Jen and D. Sidransky, Science 287, 2017 (2000).
    [3] J. Lee, K. H. Cheong, N. Huh, S. Kim, J. Choi and C. Ko, Lab Chip 6, 886 (2006).
    [4] T. D. Harris, P. R. Buzby, H. Babcock, E. Beer, J. Bowers, I. Braslavsky, M. Causey, J. Colonell, J. DiMeo, J. W. Efcavitch, E. Giladi, J. Gill, J. Healy, M. Jarosz, D. Lapen, K. Moulton, S. R. Quake, K. Steinmann, E. Thayer, A. Tyurina, R. Ward, H. Weiss and Z. Xie, Science 320, 106 (2008).
    [5] S. Ahn and D. R. Walt, Anal. Chem. 77, 5041 (2005).
    [6] J. A. Ferguson, F. J. Steemers and D. R. Walt, Anal. Chem. 72, 5618 (2000).
    [7] J. Wang, Anal. Chem. Acta 500, 247 (2003).
    [8] H. Cai, X. Cao, Y Jiang, P. He and Y. Fang, Anal. Bioanal. Chem. 375, 287 (2003).
    [9] H. Chen, J. Wei, J. Pan, W. Zhang, F. Dang, Z. Zhang and J. Zhang, Biosens. Bioelectron. 91, 328 (2017).
    [10] X. Zhao, R. T. Dytioco and W. Tan, J. Am. Chem. Soc. 125, 11474 (2003).
    [11] D. Daems, K. Knez, F. Delport, D. Spasic and J. Lammertyn, Analyst 141, 1906 (2016).
    [12] K. Sato, A. Tachihara, B. Renberg, K. Mawatari, K. Sato, Y. Tanaka, J. Jarvius, M. Nilsson and T. Kitamori, Lab Chip 10, 1262 (2010).
    [13] Y. Liu, S. Chen, Q. Liu and W. Peng, Opt. Exp. 23, 20686 (2015).
    [14] S. Panich, M. H. Sleiman, I. Steer, S. Ladame and J. B. Edel, ACS Sens. 1, 1097 (2016).
    [15] B. Song, H. Zhang, B. Liu, W. Lin and J. Wu, Biosens. Bioelectron. 81, 151 (2016).
    [16] H. S. Jang, K. N. Park, J. P. Kim, S. J. Sim, O. J. Kwon, Y. G. Han and K. S. Lee, Opt. Exp. 17, 3855 (2009).
    [17] D. Sun, T. Guo, Y. Ran, Y. Huang and B. Guan, Biosens. Bioelectron. 61, 541 (2014).
    [18] K. T. V. Grattan and D. T. Sun, Sens. Actuators A, Phys. 82, 40 (2000).
    [19] H. Tazawa, T. Kanie and M. Katayama, Appl. Phys. Lett. 91, 113901 (2007).
    [20] W. Lin, H. Zhang, B. Song, Y. Miao, B. Liu, D. Yan and Y. Liu, Opt. Exp. 23, 11123 (2015).
    [21] L. Mao, S. Pu, D. Su, Z. Wang, X. Zeng and M. Lahoubi, J. Appl. Phys. 120, 093102 (2016).
    [22] M. Ding, P. Wang and G. Brambilla, Opt. Exp. 20, 5402 (2012).
    [23] S. Pu, L. Luo, J. Tang, L. Mao and X. Zeng, IEEE Photon. Technol. Lett. 28, 1073 (2016).
    [24] Y. Chen, S. Yan, X. Zheng, F. Xu and Y. Lu, Opt. Exp. 22, 2443 (2014).
    [25] J. Teng, J. Yang, C. Lv, T. Chen, J. Guo, J. Feng and P. Wu, Opt. Fiber Technol. 20, 239 (2004).
    [26] Z. He, F. Tian, Y. Zhu, N. Lavlinskaia and H. Du, Biosens. Bioelectron. 26, 4774 (2011).
    [27] Y Liu, S Chen, Q Liu and W Peng, Opt. Exp. 23, 20686 (2015).
    [28] R. Levicky and A. Horgan, Trends Biotechnol. 23, 143 (2005).
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

WU Ji-xuan, WANG Qian, SONG Bin-bin, LIU Bo, ZHANG Hao, ZHANG Cheng, DUAN Shao-xiang, BAI Hua. Fiber-coupler-based microfluidic system for trapping of DNA biomolecules[J]. Optoelectronics Letters,2019,15(6):476-

Copy
Share
Article Metrics
  • Abstract:889
  • PDF: 0
  • HTML: 0
  • Cited by: 0
History
  • Received:September 06,2019
  • Revised:September 12,2019
  • Online: May 01,2020
Article QR Code