Abstract:Nonlinear optical properties of tetraphenylporphyrin (H2TPP) and protonated tetraphenylporphyrin (H4TPP2+) in toluene were investigated by Z-scan technique using a nanosecond laser with 5 ns pulse at 532 nm. Results show that H4TPP2+ exhibits weaker nonlinear refraction but enhanced reverse saturable absorption (RSA) and optical limiting performance in comparison with pristine H2TPP. Since no nonlinear scattering is observed in H4TPP2+ under low input fluence, and H4TPP2+ exhibits weaker nonlinear scattering signals than H2TPP under high input fluence, the enhancement of RSA and optical limiting performance can be attributed to the larger ratio of excited state absorption cross-section to that of the ground state of H4TPP2+. H4TPP2+ also exhibits superior optical limiting performance, even better than the benchmark RSA material C60.