Abstract:The images obtained by a large optical detection system (>500 mm) are always blurred by atmospheric turbulence. To address this blurring, an adaptive optical system is urgently needed. Here, a 1.3 m vehicle-based adaptive optical system (VAOS), located on the Nasmyth focus, is investigated. A two-grade tip/tilt steering mirror is used to eliminate tracking jitter and atmospheric tipping error. Pupil matching and cooperation between the deformable mirror and the wavefront sensor are adopted to achieve high-order aberration measurement and correction via closed-loop correction and to allow the telescope to obtain high-quality imaging. For different seeing conditions and site locations, the VAOS achieves the sensing over the wavelength range from 0.5 μm to 0.7 μm using a Shack-Harmann wavefront sensor and the correction with a 97-unit deformable mirror for an imaging spectrum range from 0.7 μm to 0.9 μm. Moreover, the maximum detection capability of the system is greater than a visual magnitude of 5, and the angular imaging resolution is better than 0.3".