The impact of Al2O3 back interface layer on low-temperature growth of ultrathin Cu(In,Ga)Se2 solar cells
Author:
Affiliation:

1. Tianjin Key Laboratory of Thin Film Devices and Technology, Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, Tianjin 300071, China;2. Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;3. Davidson School of Chemical Engineering, Purdue University, West Lafayette IN47907, USA

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    With reducing the absorber layer thickness and processing temperature, the recombination at the back interface is severe, which both can result in the decrease of open-circuit voltage and fill factor. In this paper, we prepare Al2O3 by atomic layer deposition (ALD), and investigate the effect of its thickness on the performance of Cu(In,Ga)Se2 (CIGS) solar cell. The device recombination activation energy (EA) is increased from 1.04 eV to 1.11 eV when the thickness of Al2O3 is varied from 0 nm to 1 nm, and the height of back barrier is decreased from 48.54 meV to 38.05 meV. An efficiency of 11.57 % is achieved with 0.88-μm-thick CIGS absorber layer.

    Reference
    Related
    Cited by
Get Citation

LIU Yang, LIUWei, CHEN Meng-xin, SHI Si-han, HE Zhi-chao, GONG Jin-long, WANG Tuo, ZHOU Zhi-qiang, LIU Fang-fang, SUN Yun, XU Shu. The impact of Al2O3 back interface layer on low-temperature growth of ultrathin Cu(In, Ga)Se2 solar cells[J]. Optoelectronics Letters,2018,14(5):363-366

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 12,2018
  • Revised:March 22,2018
  • Adopted:
  • Online: March 26,2019
  • Published: