1 550 nm long-wavelength vertical-cavity surface emitting lasers
CSTR:
Author:
Affiliation:

1. State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Bei-jing 100083, China ;2 College of Material Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China

  • Article
  • | |
  • Metrics
  • |
  • Reference [20]
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    A 1 550 nm long-wavelength vertical cavity surface emitting laser (VCSEL) on InP substrate is designed and fabricated. The transfer matrix is used to compute reflectivity spectrum of the designed epitaxial layers. The epitaxial layers mainly consist of 40 pairs of n-AlxGayIn(1-x-y)As/InP, and 6 strain compensated AlxGayIn(1-x-y)As/InP quantum wells on n-InP substrate, respectively. The top distributed Bragg reflection (DBR) mirror system has been formed by fabricating 4.5 pairs of SiO2/Si. The designed cavity mode is around 1 536 nm. The dip of the fabricated cavity mode is around 1 530 nm. The threshold current is 30 mA and the maximum output power is around 270 μW under CW operation at room temperature.

    Reference
    [1] M. Xun, Ch. Xu, Y Y. Xie, G Q. Jiang, J. Wang, K. Xu and H D. Chen, Optics Letters 40, 12349 (2015).
    [2] H Y. Qiu, Zh M. Wu, T. Deng, Y. He and G Q. X, Chinese Optics Letters 14, 021401 (2016).
    [3] Su Y M, Yu L J, Guo X, Zhang X, Liu J G and Zhu N H, Journal of Semiconductors 38, 9 (2017).
    [4] M K. Li, L J. Yuan, H Y. Yu, Q. Kan, Sh Y. Li, J P. Mi and J Q. Pan, Journal of Semiconductors 37, 034007 (2016).
    [5] M C Y. Huang, Y. Zhou and C. Chang-Hasnain, Nature Photonics 1, 119 (2007).
    [6] H Y. Kao, C T. Tsai, C Y. Pong, Sh F. Liang, Z K. Weng, Y Ch. Chi, H Ch. Kuo, J J. Huang, T Ch. Lee, Ti T Shih, J J. Jou, W H. Cheng, Ch-H Wu and G R. Lin,
    Few-Mode 850nm VCSEL Chip with Direct 16-QAM OFDM Encoding at 80-Gbit/s for 100-m OM4 MMF Link, Optical Fiber Communications Conference, Th2A.38 (2017).
    [7] H. Soda, K. Iga, C. Kitahara and Y. Suematsu, Japanese Journal of Applied Physics 18, 2329 (1979).
    [8] W. Hofmann, M. Müller, A. Nadtochiy, Ch. Meltzer, A. Mutig, G. Bohm, J. Rosskofk, D. Bimberg, M Ch. Amann and C. Chang-Hasnain, Optics Express 17, 17547 (2009).
    [9] C. Chase, Y. Rao, W. Hofmann and C J. Chang-Hasnain, Optics Express 18, 15461 (2010).
    [10] M C. Amann and W. Hofmann, IEEE Journal of Selected Topics in Quantum Electronics 15, 861 (2009).
    [11] M. Ortsiefer, R. Shau, F. Mederer, R. Michalzik, J. Rosskopf, G. Bohm, F. Kohler, C. Lauer, M. Maute and M.-C. Amann, Electronics Letters 38, 1180 (2002).
    [12] L. Chrostowski, B. Faraji, W. Hofmann, M Ch. Amann, S. Wieczorek and W W. Chow, IEEE Journal of Selected Topics in Quantum Electronics 13, 1200 (2007).
    [13] Y. Huang, X. Zhang and J. Zhang, IEEE Photonics Journal 9, 4 (2017).
    [14] H. Yu, S. Yao and G. Zhou, Optical & Quantum Electronics 50, 4 (2018).
    [15] Y. Feng, P. Liu and D. Feng, High-speed Oxidation-confined 850nm VCSELs, IEEE International Conference on Optoelectronics and Microelectronics, 389 (2016).
    [16] T. Fang, B. Cui and S. Hao, Journal of Semiconductors 39, 2 (2018).
    [17] J. Wen, Y M. Wen, P. Li and S Sh. W, Journal of Semiconductors 37, 064010 (2016).
    [18] M. Born and E. Wolf, Principles of Optics, 6th edn, Pergamon Press, Oxford, 1989.
    [19] Dan Y, Levi M and Karni Y, Facet Engineering of High Power Single Emitters, Proceedings of SPIE - The International Society for Optical Engineering, 7918 (2011).
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

LIU Li-jie, WU Yuan-da, WANG Yue, AN Jun-ming, HU Xiong-wei.1 550 nm long-wavelength vertical-cavity surface emitting lasers[J]. Optoelectronics Letters,2018,14(5):342-345

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 14,2018
  • Revised:April 20,2018
  • Online: March 26,2019
Article QR Code