Abstract:Based on the optical fiber mode theory and employing the expertized software COMSOL, we study the effect of ellipticity and misalignment on the effective refractive indices, walk-off and intensity distribution of the even and odd eigenmodes that form the basis of the orbital angular momentum (OAM) modes in a ring fiber. Our results show that the effective refractive index difference and the walk-off increase with the ellipticity and misalignment, thus reducing the stability of the OAM modes. We find that the misalignment has a greater impact on the OAM modes than the ellipticity, and both the misalignment and ellipticity affect the lower-order OAM modes more significantly, suggesting that the higher-order OAM modes are more stable during propagation.