Traffic sign recognition based on deep convolutional neural network
CSTR:
Author:
Affiliation:

School of Information Engineering, Zhengzhou University, Zhengzhou 450001, China

  • Article
  • | |
  • Metrics
  • |
  • Reference [22]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Traffic sign recognition (TSR) is an important component of automated driving systems. It is a rather challenging task to design a high-performance classifier for the TSR system. In this paper, we propose a new method for TSR system based on deep convolutional neural network. In order to enhance the expression of the network, a novel structure (dubbed block-layer below) which combines network-in-network and residual connection is designed. Our network has 10 layers with parameters (block-layer seen as a single layer): the first seven are alternate convolutional layers and block-layers, and the remaining three are fully-connected layers. We train our TSR network on the German traffic sign recognition benchmark (GTSRB) dataset. To reduce overfitting, we perform data augmentation on the training images and employ a regularization method named “dropout”. The activation function we employ in our network adopts scaled exponential linear units (SELUs), which can induce self-normalizing properties. To speed up the training, we use an efficient GPU to accelerate the convolutional operation. On the test dataset of GTSRB, we achieve the accuracy rate of 99.67%, exceed-ing the state-of-the-art results.

    Reference
    [1] Nguwi Y.Y. and Kouzani A.Z., Neural Computing and Applications 17, 265 (2008).
    [2]Mogelmose A., Trivedi M.M. and Moeslund T.B., IEEE Transactions on Intelligent Transportation Systems 13, 1484 (2012).
    [3]Lu X., Wang Y., Zhou X., Zhang Z. and Ling Z., IEEE Transactions on Intelligent Transportation Systems 18, 960 (2017).
    [4]Lim K.H., Seng K.P. and Ang L.M., Intra Color-shape Classification for Traffic Sign Recognition, 2010 International Computer Symposium (ICS2010), 642 (2010).
    [5]Madani A. and Yusof R., Neural Computing and Applications, 1 (2017).
    [6]Lau M.M., Lim K.H. and Gopalai A.A., Malaysia Traffic Sign Recognition with Convolutional Neural Network, 2015 IEEE International Conference on Digital Signal Processing (DSP), 1006 (2015).
    [7]Glorot X., Bordes A. and Bengio Y., Deep Sparse Rectifier Neural Networks, Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, 315 (2011).
    [8]Maas A.L., Hannun A.Y. and Ng A.Y., Rectifier Nonlinearities Improve Neural Network Acoustic Models, Proceedings of the 30th International Conference on Machine Learning (ICML13) 28, 6 (2013).
    [9]Xu B., Wang N., Chen T. and Li M., Empirical Evaluation of Rectified Activations in Convolutional Network, arXiv preprint arXiv:1505.00853 (2015).
    [10]Klambauer G., Unterthiner T., Mayr A. and Hochreiter S., Self-Normalizing Neural Networks, arXiv preprint arXiv:1706.02515 (2017).
    [11]LeCun Y., Bottou L., Bengio Y. and Haffner P., Proceedings of the IEEE 86, 2278 (1998).
    [12]Krizhevsky A., Sutskever I. and Hinton G.E., Advances in Neural Information Processing Systems 25, 1097 (2012).
    [13]Simonyan K. and Zisserman A., Very Deep Convolutional Networks for Large-scale Image Recognition, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
    [14]Lin M., Chen Q. and Yan S., Network in Network, Proc. ICLR, 2014.
    [15]Szegedy C., Liu W., Jia Y., Sermanet P., Reed S., Anguelov D., Erhan D., Vanhoucke V. and Rabinovich A., Going Deeper with Convolutions, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1 (2015).
    [16]He K., Zhang X., Ren S. and Sun J., Deep Residual Learning for Image Recognition, The IEEE Conference on Computer Vi-sion and Pattern Recognition (CVPR), 770 (2016).
    [17]Szegedy C., Ioffe S., Vanhoucke V. and Alemi A.A., Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning, AAAI, 4278 (2017).
    [18]Stallkamp J., Schlipsing M., Salmen J. and Igel C., Neural Networks 32, 323 (2012).
    [19]Abadi M., Agarwal A., Barham P. and Brevdo E., Tensorflow: Large-scale Machine Learning on Heterogeneous Distributed Systems, arXiv preprint arXiv:1603.04467 (2016).
    [20]Kingma D. and Ba J., Adam: A Method for Stochastic Optimization, arXiv preprint arXiv:1412.6980 (2014).
    [21]Hinton G.E., Srivastava N., Krizhevsky A., Sutskever I. and Salakhutdinov R.R., Improving Neural Networks by Preventing Co-adaptation of Feature Detectors, arXiv preprint arXiv:1207.0580 (2012).
    [22]Glorot X. and Bengio Y., Understanding the Difficulty of Training Deep Feedforward Neural Networks, Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, 249 (2010).
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

YIN Shi-hao, DENG Ji-cai, ZHANG Da-wei, DU Jing-yuan. Traffic sign recognition based on deep convolutional neural network[J]. Optoelectronics Letters,2017,13(6):476-480

Copy
Share
Article Metrics
  • Abstract:3902
  • PDF: 0
  • HTML: 0
  • Cited by: 0
History
  • Online: November 17,2017
Article QR Code