Enhanced 1.32 µm fluorescence and broadband amplifying for O-band optical amplifier in Nd3+-doped tellurite glass
CSTR:
Author:
Affiliation:

College of Information Science and Engineering, Ningbo University, Ningbo 315211, China

  • Article
  • | |
  • Metrics
  • |
  • Reference [18]
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    WO3 oxides with relatively high phonon energy and different concentrations were introduced into the Nd3+-doped tellurite-based glasses of TeO2-ZnO-Na2O to improve the 1.32 µm band fluorescence emission. The absorption spectra, Raman spectra, 1.32 µm band fluorescence spectra and differential scanning calorimeter (DSC) curves were measured, together with the Judd-Ofelt intensity parameters, stimulated emission and gain parameters were calculated to evaluate the effects of WO3 amount on the glass structure and spectroscopic properties of 1.32 µm band fluorescence. It is shown that the introduction of an appropriate amount of WO3 oxide can effectively improve the 1.32 µm band fluorescence intensity through the enhanced multi-phonon relaxation (MPR) processes between the excited levels of Nd3+. The results indicate that the prepared Nd3+-doped tellurite glass with an appropriate amount of WO3 oxide is a potential gain medium applied for the O-band broad and high-gain fiber amplifier.

    Reference
    [1] FENG Ting, YNA Feng-ping and LIU Shuo, Optoelectronics Letters 12, 119 (2016).
    [2] A. Jha, B. Richards, G. Jose, T.T. Fernandez, P. Joshi, X. Jiang and J. Lousteau, Progress in Materials Science 57, 1426 (2012).
    [3] F.J. Yang, B. Huang, L.B. Wu, Y.W. Qi, S.X. Peng, J. Li and Y.X. Zhou, Optoelectronics Letters 11, 361 (2015).
    [4] G. Laksminarayana, R. Vidya Sagar and S. Buddhudu, Journal of Luminescence 128, 690 (2008).
    [5] R.T. Karunakaran, K.Marimuthu, D. Arumugam, S. Surendra Badu, S.F. Leon-Luis and C.K. Jayasankar, Optical Materials 32, 1035 (2010).
    [6] J. Zheng, Y. Cheng, Z.Q. Wu, W.W. Zhou and M.X. Tang, Journal of Optoelectronics.Laser 26, 1924 (2015). (in Chinese)
    [7] K. Maheshvaran, S. Arunkumar, V. Sudarsan, V. Natarajan and K. Marimuthu, Journal of Alloys and Compounds 561, 142 (2013).
    [8] B.R. Judd, Physical Review 127, 750 (1962).
    [9] S. Tanabe, T. Ohyagi, N. Soga and T. Hanada, Physical Review B 46, 3305 (1992).
    [10] J.S. Ofelt, Journal of Chemical Physics 37, 511 (1962).
    [11] Y.C. Ratnakaram and A. Viswanadha Reddy, Journal of Non-Crystalline Solids 277, 142 (2000).
    [12] A. Chagraoui, A. Tairi, K. Ajebli, H. Bensaid and A. Moussaoui, Journal of Alloys and Compounds 495, 67 (2010).
    [13] K. Linganna, R. Narro-García, H. Desirena, E. De la Rosa, Ch. Basavapoornima, V. Venkatramu and C.K. Jayasankar, Journal of Alloys and Compounds 684, 322 (2016).
    [14] A. Mirgorodsky, M. Colas, M. Smirnov, T. Merle- Méjean, R. El-Mallawany and P. Thomas, Journal of Solid State Chemistry 190, 45 (2012).
    [15] J. Zhu, S.X. Dai, L.G. Wu, W. Zhang, X. Shen, X.S. Wang, T.F. Xu, G.X. Wang and Q.H. Nie, Spectroscopy and Spectral Analysis 31, 894 (2011).
    [16] X.Z. Han, L.F. Shen, E. Y. B. Pun, T.C. Ma and H. Lin, Optical Materials 36, 1203 (2014).
    [17] C.R. Kesavulu, V.B. Sreedhar, K. Jang and S.S. Yi, Materials Research Bulletin 51, 336(2014).
    [18] N.G. Boetti, J. Lousteau, A. Chiasera, M. Ferrari, E. Mura, G.C. Scarpignato, S. Abrate and D. Milanese, Journal of Luminescence 132, 1265 (2012).
    Related
    Cited by
Get Citation

ZHOU Zi-zhong, ZHOU Ming-han, SU Xiu-e, CHENG Pan, ZHOU Ya-xun. Enhanced 1.32 µm fluorescence and broadband amplifying for O-band optical amplifier in Nd3+-doped tellurite glass[J]. Optoelectronics Letters,2017,13(1):54-57

Copy
Share
Article Metrics
  • Abstract:3791
  • PDF: 0
  • HTML: 0
  • Cited by: 0
History
  • Received:November 29,2016
  • Online: January 11,2017
Article QR Code