Structure optimization of high indium content InGaAs/InP heterostructure for the growth of In0.82Ga0.18As buffer layer
CSTR:
Author:
Affiliation:

1. Key Laboratory of Automobile Materials of Ministry of Education of China, College of Materials Science and Engineering, Jilin University, Changchun 130025, China;;2. State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

  • Article
  • | |
  • Metrics
  • |
  • Reference [24]
  • |
  • Related [20]
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    Microstructure and misfit dislocation behavior in InxGa1-xAs/InP heteroepitaxial materials grown by low pressure metal organic chemical vapor deposition (LP-MOCVD) were analyzed by high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy and Hall effect measurements. To optimize the structure of In0.82Ga0.18As/InP heterostructure, the InxGa1-xAs buffer layer was grown. The residual strain of the In0.82Ga0.18As epitaxial layer was calculated. Further, the periodic growth pattern of the misfit dislocation at the interface was discovered and verified. Then the effects of misfit dislocation on the surface morphology and microstructure of the material were studied. It is found that the misfit dislocation of high indium (In) content In0.82Ga0.82As epitaxial layer has significant influence on the carrier concentration.

    Reference
    [1] X. Jin, H. Nakahara, K. Saitoh, T. Saka, T. Ujihara, N. Tanaka and Y. Takeda, Journal of Crystal Growth 353, 84 (2012).
    [2] M. Hostut, M. Alyoruk, T. Tansel, A. Kilic, R. Turan, A. Aydinli and Y. Ergun, Superlattices & Microstructures 79, 116 (2015).
    [3] N. Tounsi, M.M. Habchi, Z. Chine, A. Rebey and B. El Jani, Superlattices & Microstructures 59, 133 (2013).
    [4] S.H. Huynh, M.T.H. Ha, H.B. Do, Q.H. Luc and H.W. Yu, Applied Physics Letters 109, 10 (2016).
    [5] F. Zheng, C.Wang, Z. B. Sun and G.J. Zhai, Journal of Optoelectronics.Laser 25, 1254 (2014). (in Chinese)
    [6] S.J. Lin, J.J. Li, L.J. He, J. Den and J. Han, Journal of Optoelectronics.Laser 25, 1471 (2014). (in Chinese)
    [7] T. Mano, K. Mitsuishi, N. Ha, A. Ohtake and A. Castellano, Crystal Growth & Design 16, 5412 (2016).
    [8] J.L. Weyher, R. Fornari, T. G?r?g, J.J. Kelly and C.B. Erné, Journal of Crystal Growth 141, 57 (1994).
    [9] P.D. Casa, A. Maa?dorf, U. Zeimer and M. Weyers, Journal of Crystal Growth 434, 116 (2016).
    [10] J.G. Grabmaier and C.B. Watson, Physical Status Solidi 32, K13 (1969).
    [11] T. Takenaka, H. Hayashi, K. Murata and T. Inoguchi, Jpn J. Applied Physics Letters 17, 1145 (1978).
    [12] S. Emura, S. Gonda and Y. Matsui, Physical Review B 38, 3280 (1988).
    [13] M.R. Islam, P. Verma and M. Yamada, Jpn J. Applied Physics 41, 991 (2002).
    [14] J.P. Estrera, P.D. Stevens and R. Glosser, Applied Physics Letters 61,1927 (1992).
    [15] J. Groenen, G. Landa and R. Carles, J. Applied Physics 82, 803 (1997).
    [16] G. Burns, C.R. Wie and F.H. Dacol, Applied Physics Letters 51, 1919 (1987).
    [17] B. Jusserand, P. Voisin and M. Voos, Applied Physics Letters 46, 678 (1985).
    [18] F. Cerdeira, C.J. Buchenauer and F.H. Pollak, Physical Review B 5, 580 (1972).
    [19] R.J. Nicholas, L.C. Brunel and S. Huant, Physical Review Letter 55, 883 (1985).
    [20] T. Sasaki, A.G. Norman, M.J. Romero, M.M. Al-Jassim, M.Takahasi, N. Kojima, Y. Ohshita and M. Yamaguchi, Physical Status Solidi C 10, 1640 (2013).
    [21] J.P. Li, G.Q. Miao, Z.W. Zhang and Y.G. Zeng, Cryst. Eng. Comm. 17, 5808 (2015).
    [22] M. Fatemi and R.E. Stahlbush, Applied Physics Letters 58, 825 (1991).
    [23] Bai Y, Lee K E and Cheng C, J. Applied Physics 104, 084518 (2008).
    [24] Chen Y W, Hsu W C and Hsu R T, Solid-State Electronics 48, 119 (2004).
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

WEI Qiu-lin, GUO Zuo-xing, ZHAO Lei, ZHAO Liang, YUAN De-zeng, MIAO Guo-qing, XIA Mao-sheng. Structure optimization of high indium content InGaAs/InP heterostructure for the growth of In0.82Ga0.18As buffer layer[J]. Optoelectronics Letters,2016,12(6):441-445

Copy
Share
Article Metrics
  • Abstract:4214
  • PDF: 0
  • HTML: 0
  • Cited by: 0
History
  • Received:September 05,2016
  • Online: November 27,2016
Article QR Code