Non-blocking four-port optical router based on thermo- optic silicon microrings
CSTR:
Author:
Affiliation:

State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China

  • Article
  • | |
  • Metrics
  • |
  • Reference [15]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    By using silicon-on-insulator (SOI) platform, 12 channel waveguides, and four parallel-coupling one-microring resonator routing elements, a non-blocking four-port optical router is proposed. Structure design and optimization are performed on the routing elements at 1 550 nm. At drop state with a power consumption of 0 mW, the insertion loss of the drop port is less than 1.12 dB, and the crosstalk between the two output ports is less than −28 dB; at through state with a power consumption of 22 mW, the insertion loss of the through port is less than 0.45 dB, and the crosstalk between the two output ports is below −21 dB. Routing topology and function are demonstrated for the four-port optical router. The router can work at nine non-blocking routing states using the thermo-optic (TO) effect of silicon for tuning the resonance of each switching element. Detailed characterizations are presented, including output spectrum, insertion loss, and crosstalk. According to the analysis on all the data links of the router, the insertion loss is within the range of 0.13—3.36 dB, and the crosstalk is less than −19.46 dB. The router can meet the need of large-scale optical network-on-chip (ONoC).

    Reference
    [1] A. Shacham, K. Bergman and L. P. Carloni, IEEE Transactions on Computers, Analyst 57, 1246 (2015).
    [2] Y.Y. Ye, L. Duan, J. Xu, O.Y. Jin, M.K. Hung and X. Yuan, 3D Optical Networks-on-chip (NoC) for Multiprocessor Systems-on-chip (MPSoC), IEEE International Conference on 3D Systems Integration, 83 (2009).
    [3] Y.Y. Xie, W.H. Xu, W.L. Zhao, Y.X. Huang, T.T. Song and M. Guo, Journal of Lightwave Technology 33, 3858 (2015).
    [4] Z. Chen, H. X. Gu, Y. T. Yang, L.Y. Bai and H. Li, IEEE Computer Architecture Letters 13, 5 (2014).
    [5] Q. Q. Luo, C. T. Zheng, X. L. Huang, Y. D. Wang and D. M. Zhang, Optical and Quantum Electronics 6, 829 (2014).
    [6] C. T. Zheng, Q. Q. Luo, C. S. Ma, D. M. Zhang and Z. B. Li, Optics Communications 322, 214 (2014).
    [7] C. T. Li, C. T. Zheng, Y. Zheng, X. L. Huang, D. M. Zhang and C. S. Ma, Optics Communications 339, 94 (2015).
    [8] L. Yang, H. Jia, Y.C. Zhao and Q.S. Chen, Optics Letters 40, 1129 (2015).
    [9] R.Q. Ji, J. Xu and L. Yang, IEEE Photonics Technology Letters 25, 492 (2013).
    [10] X.F. Tan, M. Yang, L. Zhang, Y.T. Jiang and J.Y. Yang, Journal of Lightwave Technology 30, 368 (2012).
    [11] R. Min, R.Q. Ji, Q.S. Chen, L. Zhang and L. Yang, Journal of Lightwave Technology 30, 3736 (2012).
    [12] L. Zhang, Y.J. Man, X.F. Tan, M. Yang, T. Hu, J.Y. Yang and Y.T. Jiang, Journal of Optical Communications and Networking 6, 879 (2014).
    [13] C.T. Zheng, L. Liang, W.L. Ye, D.M. Zhang and C.S. Ma, IEEE Photonics Technology Letters 27, 581 (2015).
    [14] R.Q. Ji, L. Yang, L. Zhang, Y.H. Tian, J.F. Ding, H.T. Chen, Y.Y. Lu, P. Zhou and W.W. Zhu, Optics Express 19, 18945 (2011).
    [15] V.R. Shrestha, H.S. Lee, Y.G. Lee and S.S. Lee, Optics Communications 331, 64 (2014).
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

DANG Pei-pei, LI Cui-ting, ZHENG Wen-xue, ZHENG Chuan-tao, WANG Yi-ding. Non-blocking four-port optical router based on thermo- optic silicon microrings[J]. Optoelectronics Letters,2016,12(4):268-272

Copy
Share
Article Metrics
  • Abstract:3868
  • PDF: 0
  • HTML: 0
  • Cited by: 0
History
  • Received:April 27,2016
  • Online: September 06,2016
Article QR Code