A measurement-device-independent quantum key distribution protocol with a heralded single photon source
CSTR:
Author:
Affiliation:

Electronic Engineering College, Naval University of Engineering, Wuhan 430033, China

  • Article
  • | |
  • Metrics
  • |
  • Reference [24]
  • |
  • Related [20]
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    With a heralded single photon source (HSPS), a measurement-device-independent quantum key distribution (MDI-QKD) protocol is proposed, combined with a three-intensity decoy-state method. HSPS has the two-mode characteristic, one mode is used as signal mode, and the other is used as heralded mode to reduce the influence of the dark count. The lower bound of the yield and the upper bound of the error rate are deduced and the performance of the MDI-QKD protocol with an HSPS is analyzed. The simulation results show that the MDI-QKD protocol with an HSPS can achieve a key generation rate and a secure transmission distance which are close to the theoretical limits of the protocol with a single photon source (SPS). Moreover, the key generation rate will improve with the raise of the senders’ detection efficiency. The key generation rate of the MDI-QKD protocol with an HSPS is a little less than that of the MDI-QKD protocol with a weak coherent source (WCS) in the close range, but will exceed the latter in the far range. Furthermore, a farther transmission distance is obtained due to the two-mode characteristic of HSPS.

    Reference
    [1]C. H. Bennett and G. Brassard, Quantum Cryptography:Public Key Distribution and Coin Tossing, in Proceedings of IEEE International Conference on Computers, Syetems and Signal Processing, Bangalore, India, 1984.
    [2]Y. Y. Zhou, H. Q. Zhang, X. J. Zhou and P. G. Tian, Acta Phys. Sin. 62, 200302 (2013). (in Chinese)
    [3]Y. Y. Zhou, X. J. Zhou, P. G. Tian and Y. J. Wang, Chin. Phys. B 22, 010305 (2013).
    [4]Y. Y. Zhou and X. J. Zhou, Acta Phys. Sin. 60, 100301 (2011). (in Chinese)
    [5]Y. Y. Zhou and X. J. Zhou, Optoelectron. Lett. 11, 0149 (2015).
    [6]Q. Wang, W. Chen, G. Xavier, M. Swillo, T. Zhang, S. Sauge, M. Tengner, Z. F. Han, G. C. Guo and A. Karlsson, Phys. Rev. Lett. 100, 090501 (2008).
    [7]X. B. Wang, Phys. Rev. Lett. 94, 230503 (2005).
    [8]W. Y. Hwang, Phys. Rev. Lett. 91, 057901 (2003).
    [9]V. Makarov, New J. Modern Opt. 11, 065003 (2009).
    [10]L. Lars, W Carlos and W Christoffer, Nature Photonics 4, 686 (2000).
    [11]V. Makarov and A. Anisimov, Phys. Rev. A 74, 022313 (2006).
    [12]H. K. Lo, M. Curty and B. Qi, Phys. Rev. Lett. 108, 130503 (2012).
    [13]X. F. Ma and R. Mohsen, Phys. Rev. A 86, 062319 (2012).
    [14]S. H. Sun, M. Gao, C. Y. Li and L. M. Liang, Phys. Rev. A 87, 052329 (2013).
    [15]F. H. Xu, M. Curty, B. Qi and H. K. Lo, New J. Phys. 15, 113007 (2013).
    [16]Y. Z. Shan, S. H. Sun, X. C. Ma, M. S. Jiang, Y. L. Zhou and L. M. Liang, Phys. Rev. A 90, 042334 (2014).
    [17]C. Dong, S. H. Zhao, W. H. Zhao, L. Shi and G. H. Zhao, Acta Phys. Sin. 63, 030302 (2014). (in Chinese)
    [18]Y. Liu, T. Y. Chen, L. J. Wang, H. Lao, G. L. Shentu, J. Wian, K. Cui, H. L. Yin, N. L. Liu, L. Li, X. F. Ma, J. S. Pele, M. M. Fejer, Q. Zhang and J. W. Pan, Phys. Rev. Lett. 111, 130502 (2013).
    [19]Z. Tang, Z. Liao, F. Xu, B. Qi, L. Qian and H. K. Lo, Phys. Rev. Lett. 112, 190503 (2014).
    [20]Y. L. Tang, H. L. Yin, S. J. Chen, Y. Liu, W. J. Zhang, X. Jiang, L. Zhang, J. Wang, L. X. You, J. Y. Guan, D. X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. F. Ma, T. Y. Chen, Q. Zhang and J. W. Pan, Phys. Rev. Lett. 113, 190501 (2014).
    [21]Q. Wang, X. B. Wang and G. C. Guo, Phys. Rev. A 75, 012312 (2007).
    [22]W. Mauerer and C. Silberhorn, Phys. Rev. A 75, 050305 (2007).
    [23]Y. Adachi, T. Yamamoto, M. Koashi and N. Imoto, Phys. Rev. Lett. 99, 180503 (2007).
    [24]Q. Wang, W. Chen, G. Xavier, M. Swillo, T. Zhang, S. Sauge, M. Tengner, Z. F. Han, G. C. Guo and A. Karlsson, Phys. Rev. Lett. 100, 090501 (2008).
    Cited by
Get Citation

ZHOU Yuan-yuan, ZHOU Xue-jun, SU Bin-bin. A measurement-device-independent quantum key distribution protocol with a heralded single photon source[J]. Optoelectronics Letters,2016,12(2):148-151

Copy
Share
Article Metrics
  • Abstract:3917
  • PDF: 0
  • HTML: 0
  • Cited by: 0
History
  • Received:December 25,2015
  • Online: April 29,2016
Article QR Code