Multi-bandgap photonic materials and devices fabricated by UV-laser induced quantum well intermixing
DOI:
Author:
Affiliation:
Clc Number:
Fund Project:
Article
|
Figures
|
Metrics
|
Reference
|
Related
|
Cited by
|
Materials
|
Comments
Abstract:
Ultraviolet (UV)-laser induced quantum well intermixing (QWI) technique can generate large multiple bandgap blue shifts in III-V quantum well semiconductor heterostructure. The application of the UV-laser QWI technique to fabricate multi-bandgap photonic devices based on compressively strained InGaAsP/InP quantum well laser microstructure is reported. We show that under certain UV-laser irradiation conditions, the photoluminescence (PL) intensity can be enhanced, and the full width at half maximum (FWHM) linewidth can be reduced. The blue shift of bandgap can reach as large as 145 nm, while the PL intensity is about 51% higher than that of the as-grown material. Experimental results of post growth wafer level processing for the fabrication of bandgap-shifted waveguides and laser diodes are presented.
Reference
Related
Cited by
Get Citation
Mohammad Kaleem, Xin Zhang, You-guang Yang, Yuan Zhuang, Jian-jun He. Multi-bandgap photonic materials and devices fabricated by UV-laser induced quantum well intermixing[J]. Optoelectronics Letters,2013,9(5):358-361