Abstract:For the first time, periodic loaded electrodes and mushroom-type waveguide are combined to improve the performance of traveling-wave electroabsorption modulators (TWEAMs) based on the asymmetric intra-step-barrier coupled double strained quantum well (AICD-SQW). The electrical modulation response of periodic mushroom-type TWEAM is obtained by using equivalent circuit model, and is compared with simulation result of conventional mushroom-type TWEAM counterpart. The equivalent circuit model simulation results indicate that for the exemplary modulation length of 300 μm, the mushroom-type TWEAM with periodic transmission line loading can achieve much wider bandwidth about 99.7 GHz and 43.1 GHz than the conventional counterpart with about 43 GHz and 33 GHz for 35Ω and 45 Ω terminations, respectively.