Technique for calibration of chassis components based on encoding marks and machine vision metrology
DOI:
Author:
Affiliation:

Clc Number:

TP391.41

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    A novel technique for calibrating crucial parameters of chassis components is proposed, which utilizes the machine vision metrology to measure 3D coordinates of the center of a component’s hole for assembling in the 3D world coordinate system. In the measurement, encoding marks with special patterns will be assembled on the chassis component associated with cross drone and staff gauge located near the chassis. The geometry and coordinates of the cross drone consist of two planes orthogonal to each other and the staff gauge is in 3D space with high precision. A few images are taken by a high-resolution camera in different orientations and perspectives. The 3D coordinates of 5 key points on the encoding marks will be calculated by the machine vision technique and those of the center of the holes to be calibrated will be calculated by the deduced algorithm in this paper. Experimental results show that the algorithm and the technique can satisfy the precision requirement when the components are assembled, and the average measurement precision provided by the algorithm is 0.0174 mm.

    Reference
    Related
    Cited by
Get Citation

Li-mei Song. Technique for calibration of chassis components based on encoding marks and machine vision metrology[J]. Optoelectronics Letters,2011,7(1):61-64

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online:
  • Published: