Abstract:The band gap of two-dimensional (2D) photonic crystals with the square lattice of rotational square air columns made of GaAs and Ge is analyzed by the plane wave expansion method. The effects of dielectric refractive index and crystal structures on the absolute photonic band gap are investigated. The results show that the maximum absolute photonic band gap emerges when the square air columns are rotated for 30° and the filling ratio f of the medium is 0.3276. It is also noticed that absolute photonic band gaps appear when the refractive index of the medium (n) is 2.61. When n=3.70, the width of the absolute photonic bandgaps reaches the maximum.