A ferroelectric polyvinylidene fluoride-coated porous fiber based surface-plasmon-resonance-like gas sensor in the terahertz region
DOI:
Author:
Affiliation:

Clc Number:

O534.1

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In this paper, a ferroelectric polyvinylidene fluoride (PVDF)-coated porous polymer fiber based surface plasmon resonance (SPR)-like gas sensor is proposed theoretically in the terahertz (THz) region based on the total internal reflection (TIR). In such a sensor, the phase matching is achieved by changing the fiber parameters and the plasmon-like phenomenon at the interface between the ferroelectric polyvinylidene fluoride (PVDF) layer and the gaseous analyte is discussed. Using a fullvector finite-element method, the core-mode loss of the fiber is calculated to measure the resolution of the sensor. The amplitude resolution is demonstrated to be as low as 1.45 × 10−4 RIU, and the spectral resolution is 1.30 × 10−4 RIU in THz region, where RIU means the refractive index unit.

    Reference
    Related
    Cited by
Get Citation

Lei Jing. A ferroelectric polyvinylidene fluoride-coated porous fiber based surface-plasmon-resonance-like gas sensor in the terahertz region[J]. Optoelectronics Letters,2010,6(5):321-324

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online:
  • Published: