Abstract:A dispersion-flattened photonic crystal fiber with normal dispersion is designed for generating flat wideband supercontanuum, and the supercontinuum generation in this fiber is numerically analyzed. The results show that by appropriately designing the photonic crystal fiber, it can achieve flattened dispersion in the normal dispersion region. It is found that a fiber characterized by a flattened dispersion with a small normal dispersion is suitable for a flat wideband supercontinuum generation. In the process of spectral broadening, self-phase modulation effect plays a dominant role. By filtering the supercontinuum, pulses with different central wavelength over a wide spectral range can be obtained. The pulse width is determined by the bandwidth of the filter.