A novel optical-spectrum-encoded (OSE) analog-to-digital converter (ADC) is proposed in this letter. To simply exemplify the conversion idea, a 5-bit device structure consisted of Fabry-Perot interferometers (FPI) is analyzed and numerically simulated. The dependence of peak-transmission wavelength on modulation voltage in an electro-optical FPI and the dependence of transmitted power on incident light wavelength in an FPI are discussed and utilized to implement OSEADC.A linearly tunable mode-locked laser, as a voltage-wavelength transformer and a sampler, and chirped grating FPIs, as an encoder array, can be used to obtain much greater sampling rate and bit-resolution.